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Dense Continuous-Time Optical Flow from Event Cameras
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(a) First Frame (b) Second Frame (c) Events (d) Prediction (e) Frame-based baseline

Fig. 1. (d) Our method, trained only on simulated events, predicts dense pixel trajectories in continuous-time on real sequences. The frames in (a) and
(b) are shown only for illustrative purposes. In (c), we also visualize selected pixel trajectories in the space-time volume of events. (e) The frame-based
baseline [1] attempts to predict linear motion from the frames but falls short due to perceptual ambiguity and non-linear motion in pixel space.

Abstract— We present a method for estimating dense
continuous-time optical flow from event data. Traditional dense
optical flow methods compute the pixel displacement between
two images. Due to missing information, these approaches
cannot recover the pixel trajectories in the blind time between
two images. In this work, we show that it is possible to
compute per-pixel, continuous-time optical flow using events
from an event camera. Events provide temporally fine-grained
information about movement in pixel space due to their asyn-
chronous nature and microsecond response time. We leverage
these benefits to predict pixel trajectories densely in continuous
time via parameterized Bézier curves. To achieve this, we build
a neural network with strong inductive biases for this task:
First, we build multiple sequential correlation volumes in time
using event data. Second, we use Bézier curves to index these
correlation volumes at multiple timestamps along the trajectory.
Third, we use the retrieved correlation to update the Bézier
curve representations iteratively. Our method can optionally
include image pairs to boost performance further. To the best
of our knowledge, our model is the first method that can regress
dense pixel trajectories from event data. To train and evaluate
our model, we introduce a synthetic dataset (MultiFlow) that
features moving objects and ground truth trajectories for every
pixel. Our quantitative experiments not only suggest that our
method successfully predicts pixel trajectories in continuous
time but also that it is competitive in the traditional two-view
pixel displacement metric on MultiFlow and DSEC-Flow. Open
source code and datasets are released to the public.

MULTIMEDIA MATERIAL

Code and dataset available at:
https://github.com/uzh-rpg/bflow

I. INTRODUCTION

Optical flow estimation is a fundamental low-level vision
task that informs about motion in pixel space. It has nu-
merous practical applications in computational photography
and videography, video compression, inverse graphics, object
tracking, and robotics [2].

The authors are with the Robotics and Perception Group, affiliated with
both the Dept. of Informatics of the University of Zurich and the Dept. of
Neuroinformatics of the University of Zurich and ETH Zurich, Switzerland.

Traditionally, this problem has been addressed by finding
dense correspondences between two frames. Frame-based
sensors provide information at a fixed frequency, independent
of the dynamics in the scene, and must strike a trade-
off between bandwidth and latency: At high speeds, they
require a high frame-rate to reduce perceptual latency, but
this introduces a significant bandwidth-overhead for down-
stream systems. Instead, reducing the frame-rate reduces the
bandwidth requirements but at the cost of missing important
scene dynamics. These shortcomings have inspired recent
work to address optical flow estimation with event cameras
[3], [4]. In contrast to frame-based sensors, which capture
frames at regular intervals, event cameras register per-pixel
brightness changes asynchronously and at very high temporal
resolution (< 1 millisecond). Additionally, they are robust to
motion blur and have a very high dynamic range [5]. Due to
these properties, event cameras are ideally suited for optical
flow estimation. Nonetheless, these advantages are tied to
the fundamentally different data format resulting from event
cameras.

Effectively extracting motion information from event cam-
eras is a non-trivial task for which deep neural networks
have shown promising results. Until now, neural network
approaches regress optical flow at a specific timestamp [3],
[4]. Event cameras provide visual cues in continuous-time,
which means that predicting discrete pixel displacements
ignores much of the device’s potential [4].

In this work, instead, we go a step further and propose
a differentiable model that can can exploit the rich spatio-
temporal nature of event data by regressing continuous-time
trajectories for every pixel of the camera. Figure 1 illustrates
an example prediction of our method using only events in
a short time window. This approach not only enables new
applications that can make use of continuous-time pixel
trajectories [6], [7] but also generally improves the accuracy
of the model, as we will show in our experiments in Sec. V.

Extracting per-pixel continuous-time trajectories from
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event data is a challenging problem that requires careful
modelling of the problem. To achieve this, we propose the
following methodological innovations:

• Instead of predicting pixel displacements, we generalize
this concept and estimate control points of Bézier curves
for each pixel. As a result, our method can regress the
trajectory of each pixel at arbitrary times. It also enables
the second innovation:

• We use multiple correlation volumes in time to search
for pixel correspondences. We then use the estimated
Bézier curves to retrieve correlation features of all
correlation volumes simultaneously. This enables the
incorporation of motion prior and facilitates the task
of finding accurate pixel trajectories.

• The use of image data is optional. We show that our
approach works well purely with event data and enable
dense, pixel-wise trajectories. Furthermore, we show
that a combination of image and event data outperforms
single-modality approaches on both real and synthetic
datasets.

To train and evaluate our model we also contribute a
new synthetic dataset MultiFlow which is inspired by the
FlyingChairs dataset [8]. Differently from the FlyingChairs
dataset, MultiFlow features event data from various moving
objects undergoing continuous similarity transformations as
well as dense pixel-trajectory ground truth.

The proposed approach generalizes both the RAFT [9]
and E-RAFT [4] architecture by not only giving the option
to compute multiple correlation volumes in time but also
to predict Bézier curves that include the linear motion
model as a special case. The introduction of Bézier curves
gives the model the capabilities to estimate non-linear pixel-
trajectories but also reduces the end-point-error that is used
to assess the accuracy of predicted pixel displacements.

Our experiments suggest that simply giving the model the
flexibility to predict Bézier curves reduces the end-point-
error on MultiFlow by approximately 67%. Additionally, the
introduction of multiple correlation lookups in time further
reduces the error metric computed on the whole trajectory
by approximately 40%. Finally, we provide quantitative
real-world experiments for the traditional optical flow task
on DSEC-Flow [4], reducing the end-point-error by 14.5%
compared to prior art.

II. RELATED WORK

A. Optical Flow
For conciseness, we focus mostly on neural-network-based

methods.
1) Image-based: The vast majority of neural network-

based optical flow method considers the task of estimating
dense pixel displacements from a pair of frames [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].
A common component of many highly successful methods
are explicit correlation volumes that guide the matching pro-
cess. This inductive bias enables high performance and data
efficiency [9] as well as strong cross-dataset generalization
[17].

Multi-Frame optical flow estimation has been mostly
explored in the self-supervised learning setting [22], [23],
[24] or optimization-based literature [25], [26], [27]. Some
neural-network-based approaches use an additional pair of
frames to initialize the optical flow prediction [9] or use
warped flow as input [28] to a second stage. Recent work
proposes to track single pixels from video [29]. By esti-
mating the trajectory only for a single pixel, this method
does not utilize spatial information but still achieves re-
markable performance. From these multi-frame approaches,
Slow Flow [25] is conceptually most related. Slow Flow
estimates optical flow F1→N given a sequence of N images
at high frame rate (1000 fps) with dense tracking using an
optimization-based approach. However, it requires a high-
speed camera and complex occlusion handling that incurs
a trade-off between drift and accurate prediction at motion
boundaries.

2) Event-based: Event-based optical flow algorithms can
be categorized into four categories: (i) Asynchronous meth-
ods [30], [31] using the Lucas-Kanade algorithm [32]. (ii)
Plane fitting-based methods that exploit the local plane-
like shape of spatio-temporal event streams [33], [34]. (iii)
Variational optimization-based approaches [35], [36] that
incorporate image data[36] or simultaneously estimate im-
age intensity [35]. (iv) Learning-based approaches, most of
which are trained via self-supervision [3], [37], [38], [39],
[40]. Supervision is provided either by images[3], [37], [38]
or events[39], [40]. Our approach is related to E-RAFT [4],
which adapts the RAFT [9] framework to event data to
leverage correlation features from cost volumes to estimate
dense pixel correspondences for large displacements. In
contrast to E-RAFT or RAFT, we predict pixel trajectories
using multiple correlation lookups in time while we also
show the advantages of combining events and frames.

B. Continuous Tracking

Continuous-time trajectory estimation of camera poses has
been proposed in the context of rolling shutter compen-
sation [41] as well as visual-intertial odometry for event
cameras [42]. Instead, we are interested in regressing pixel-
trajectories, which is more closely related to high-speed
feature tracking for event cameras [31], [43], [44], [45].
Our approach is related to the work of Seok et al. [43]
who use quadratic Bézier curves to sparsely track features
by maximizing the variance of the image of warped events
on local patches. In contrast to our work, this method can
only sparsely track features where events are present, cannot
incorporate learned priors from data, and does not offer the
possibility to include images.

C. Datasets for Optical Flow

Existing datasets can be categorized as image-based opti-
cal flow datasets and event-based optical flow datasets.

1) Image-based: The seminal work of FlowNet [21]
proposed a large synthetic dataset called ”FlyingChairs”
to train their CNN. FlyingThings3D[46] introduced a syn-
thetic stereo-video dataset with scene flow ground truth.
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Fig. 2. Overview of the framework. For concise presentation, we illustrate the purely event-based approach. We create multiple correlation voxel grids in
a sequence to compute correlation volumes. Bézier curves B, parameterized by a set of control points P , represent the continuous-time pixel trajectories.
Along these trajectories, we index J correlation volumes at their associated timestamps τCR. An learned update operator uses the output of this lookup
operation to update the Bézier curves. Finally, this loop is repeated in an iterative fashion.

AutoFlow[47] proposes to render large-scale training data
with rich data augmentation in 2D for optical flow estimation.
These datasets, however, do not provide event data and
ground truth pixel trajectories beyond two views.

2) Event-based: MVSEC [3] contains 5 outdoor driving
sequences and 4 indoor sequences. However, optical flow
ground truth from MVSEC suffers from inaccuracies in
calibration [4] and only features very small displacements.
DSEC-Flow, a more recent dataset, addresses these short-
comings by providing accurate but sparse optical flow ground
truth. The main downside of MVSEC and DSEC-Flow is
that they both do not include optical flow ground truth for
dynamic objects.

In contrast to the aforementioned datasets, our synthetic
dataset MultiFlow features accurate and dense ground truth
for pixel trajectories as well as image and event data. The
concept of pixel trajectories is a generalization of pixel
displacement and can be used to supervise and evaluate pixel
tracking methods.

III. METHODOLOGY

This paragraph outlines our methodology, setting the stage
for the following detailed explanations. To assist in visu-
alizing the process, Figure 2 serves as a helpful guide.
Our approach begins by transforming events into a spatio-
temporal event representation, crucial for subsequent feature
extraction, as elaborated in Section III-B. Following this,
our model extracts two key types of features: context and
correlation features from the event representations. The in-
tricacies of this process are elaborated in Section III-C. At
the heart of our approach lies the computation of correlation
volumes. These volumes are critical in assessing the quality
of feature matches over time, thereby aiding in the tracking
of pixel movements. This aspect is thoroughly explained in
Section III-D. Further, we describe our iterative approach
to refine pixel motion, which is parameterized by Bézier
curves initialized as straight lines. These curves are crucial
for indexing the correlation volumes and thus, for guiding
the trajectory estimation process. The nuances of this step
are covered in Section III-E.

Our implementation reuses many components of the orig-
inal RAFT architecture [9]. While Figure 2 offers a concep-
tual summary of our approach, the specific neural network
architecture that integrates these elements is depicted in
Figure 2 of the supplementary material.

A. Problem Definition

Our method is tasked with estimating a function

B : T × N0 × N0 → R2 (1)
(τ, x, y) 7→ B(τ, x, y) (2)

that describes the per-pixel trajectories in time on the image
plane. T = R∩ [0, 1] describes the domain of the normalized
time τ(t) = (t−tr)/(tt−tr) , where τ = 0 corresponds to the
reference time tr from which the pixel trajectory starts and
τ = 1 corresponds to the target time tt when the pixel
trajectory ends. This formulation can be used to find the
pixel displacement at any time between tr and tt.

As will be explained in more detail later, the proposed
approach also uses additional events from time t0 until
the reference time tr to extract feature maps at different
timestamps. However, the pixel trajectory is estimated only
from the reference time tr to the target time tt.

B. Input Data Preparation

The proposed approach uses features extracted from event
data and optionally a pair of images to further boost perfor-
mance.

1) Multi-View Event Representations: Event cameras have
a fundamentally different working principle than frame-based
cameras. Instead of acquiring frames, event cameras receive
asynchronous events with high temporal resolution. An event
ek(t) = (xk, yk, t, pk) is a tuple containing information
about a pixel (xk, yk) for which a positive or negative
brightness change pk was registered at time t. Note that the
time t typically has microsecond resolution, which provides
precise temporal information about motion in the scene.

The first step of the feature extraction pipeline is the con-
struction of a discrete spatio-temporal representation from a
sequence of events. For our experiments, we choose the voxel
grid representation by Zhu et al. [37] due to its simplicity
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Voxelization Context Voxel Grid

Correlation Voxel Grids

Bézier Flow

Fig. 3. Voxel Grid Generation. Events are interpolated into a voxel grid
representation before being divided into sub-voxel grids that are either used
as input to the context encoder or the correlation encoder. The Bézier curves,
indicated in the figure, are estimated from the reference time tr to the target
time tt for each pixel. The initial voxel grid channels before the reference
time tr are used for extracting correlation voxel grids as visualized in the
lowest, green row of the figure.

and possibility to extract features in a sliding window. Figure
3 provides an overiew of this process.

Given the task of estimating continuous pixel trajectories
from tr, the reference time, to the target time tt, Our method
first computes a base voxel grid, visualized in red in Figure
3, consisting of M + N − 1 discrete bins along the time
dimension via interpolation of event data [37]. The first M
bins are computed from events between initial time t0 and
the reference time tr. These events are used to extract the
correlation features later in the pipeline. The last N bins are
computed from events during the time window [tt, tr] when
the pixel trajectories are estimated. These N bins are required
to extract the context features. The bin at the reference
timestamp tr will be reused by both correlation and context
features such that the base voxel grid consists of M +N −1
bins.

From this base voxel grid, we first extract the context voxel
grid V CT, visualized in yellow in Figure 3. The next step
is the extraction of J ≤ N correlation voxel grids V CR

j ,
visualized in green in Figure 3, in a sliding-window fashion
from the base voxel grid. While it is possible to extract up to
J = N correlation voxel grids, we find in our ablation study
in Section V-D.4 that the choice of J can be used to trade off
performance and compute. Each of these correlation voxel
grids contain information about the contrast differences in the
scene at slightly different times. They will later be used to
guide the search for pixel trajectories via lookup operations.
We refer to the correlation voxel grids also as views because
they each represent a distinct timestamp. If we choose to
extract at least two correlation voxel grids apart from the
reference timestamp tr (i.e. J ≥ 3), we categorize the method
as multi-view.

2) Optional Frame-based Input: As we show in the ex-
perimental results, the performance of the proposed method
improves if image data is used in addition to events only.
To do so, we acquire a reference frame Ir at tr and a target

frame It at tt. These frames contain richer information about
texture at the boundary timestamps of the regressed pixel
trajectories and thus simplify the correspondence search.

C. Feature Extraction

Features are extracted from input images and voxel grids
with a convolutional network. The basic architecture of the
encoders follows prior work [9], [4]. The encoders extract
D = 256 dimensional features from their input at 1/8th
of the original resolution using residual blocks with striding
for downsampling the feature maps. From now on, we use
H ′ = H/8 and W ′ = W/8 to refer to the downsampled
resolution.

The context feature encoder fCT : R(N+3)×H×W 7→
RD×H′×W ′

concatenates the voxel grid V CT with the frame
Ir, if available, to extract combined features. The reference
frame Ir informs the network about the absolute intensity of
the reference pixels while the context voxel grid V CT pro-
vides rich information about motion during the time duration
of the pixel trajectories. Note that the context network only
extracts features from Ir and not It because we require the
context features to be aligned with the reference timestamp.
Finally, contrast information is not explicitly considered yet,
which will be provided by the correlation feature encoders.

The correlation feature encoder fV
CR : RM×H×W 7→

RD×H′×W ′
for event representations computes features from

the N correlation voxel grids in parallel, by sharing the
weights. The result of this operation are N feature maps,
each assigned to the timestamp associated with the last bin
of each correlation voxel grid. If in addition, a pair of frames
is available, we extract image features with an additional
encoder f I

CR : R3×H×W 7→ RD×H′×W ′
.

D. Multi-View Correlation Volumes

We compute correlation volumes to guide correspondence
search in space and time by associating subsequent views
with the reference view. This association is visualized in
Figure 4 and 2. We use the features created from voxel grid
V CR
0 and optionally Ir to create the feature maps for the

reference view. For each subsequent view j, we compute
features from voxel grid V CR

j to compute the correlation
volume as in equations (5) and (3). For the final/target
view, we optionally compute a correlation volume from
the boundary image features as in equations (5) and (4).
We perform the computation of all correlation volumes in
parallel with batched matrix multiplication.

C
(
fV

CR(V
CR
0 ), fV

CR(V
CR
j )

)
∈ RH′×W ′×H′×W ′

, (3)

C
(
f I

CR(Ir), f
I
CR(It)

)
∈ RH′×W ′×H′×W ′

, (4)

where

Cijkl(a, b) =
1√
D

∑
d

adij · bdkl (5)

E. Iterative Multi-View Flow Updates

This section describes the update scheme that uses corre-
lation volumes introduced in the previous section III-D.
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Fig. 4. Correlation-volume pairs with indicated lookup direction. The
upper row shows lookups from voxel grid features and the lower row shows
lookups from image features.

1) Continuous-Time Flow: We seek a representation of
the function B(τ, x, y), as introduced in equation (1), that
generalizes the conventional displacement prediction of two-
frame optical flow methods. To achieve this, we choose to
use Bézier curves defined as

B(τ, x, y) =

n∑
i=0

(
n
i

)
(1− τ)n−iτ iPi(x, y). (6)

B(τ, x, y) describes the displacement of pixel (x, y) for the
normalized time τ ∈ [0, 1]. As an example, the Bézier curves
of degree n = 1 simply represent a linear trajectories in
space and time that is fully described by P1. The task of
our method, however, is to regress the parameter set

P = {P1, . . . ,Pn} (7)

P0 = 0 does not have to be estimated because it defines
the starting point of the trajectory that coincides with the
reference pixels. The advantages of working with Bézier
curves is that they are fast to evaluate and can be concisely
summarized by a set of parameters P .

The degree n of the Bézier curves is a fixed parameter.
Our ablation study in Section V-D.2 suggests to set n equal
to the number of supervision points along the trajectory for
an accurate trajectory prediction.

Iterative Bézier Updates: The Bézier curves are initial-
ized with P = {0, . . . ,0} such that B = 0. The update block
of the network estimates increments ∆P that are added to
the current estimate of the Bézier curve parameters. More
specifically, in each iteration from k to k + 1 the network
updates the parameter set P the following way:

Pk+1
i = Pk

i +∆Pk
i , ∀i ∈ {1, . . . , n}

2) Multi-View Correlation Lookup: Similar to the original
RAFT implementation, we use lookup operations to extract
features from the correlation volumes. In contrast, however,
we extract features from multiple correlation volumes, each
associated to a unique normalized timestamp. Given the
current estimate of the Bézier control points P , we map each
pixel x = (x, y) at time τ = 0 to the estimated corresponding
pixel location x′(τ) = (x′(τ), y′(τ)) at time τ :

x′(τ) = x+B(τ,x) (8)

Similar to RAFT, the lookup is performed in a local neigh-
borhood N around the corresponding pixel location x′(τ):

N (x′(τ)) =
{
x′(τ) + dx |dx ∈ Z2, ||dx||∞ ≤ r

}
(9)

Fig. 5. Illustrative example of a Bézier prediction and Nk = 4 ground
truth flow maps from which the loss function (10) is computed.

Lookups are performed on all available correlation volumes
with bilinear sampling. We use a constant lookup radius of
r = 4, as in the original RAFT implementation, to increase
the effective lookup radius. Finally, the values from the union
of lookup operations are concatenated into a single feature
map.

3) Upsampling of Bézier Curves: The Bézier control
points are estimated at 1/8-th of the original resolution. Since
B(·) is linear in the control points P , we can upsample the
Bézier curves to the full resolution using convex upsampling
[9]. As a result, the Bézier curves at the full resolution will
be a learned convex combination of 3 × 3 grids of Bézier
curves at the lower resolution.

F. Supervision

We supervise the model with Nk ground truth flow maps
along the trajectory, visualized in Figure 5.

L =
1

Nk

Ni∑
i=1

γNi−i
Nk∑
k=1

||fgt(τk)−Bi(τk)||1 (10)

where Bi is the Bézier curve at iteration i, τk ∈ [0, 1] are
the evaluation timestamps of the Bézier curves, and γ = 0.8.
For a single displacement map, such as in two-frame optical
flow, the corresponding parameters are Nk = 1 and τ1 = 1.

IV. MULTIFLOW DATASET

To the best of our knowledge, there are no publicly
available datasets with dense ground truth for pixel trajec-
tories, which is more general than pixel displacements, in
combination with events and images. Therefore, we create a
new synthetic dataset to evaluate the proposed approach.

A. Data Generation Procedure

We generate 10100 training and 2000 test sequences
in simulation for MultiFlow. The background images are
sampled from the Flickr30K dataset [48]. The foreground
objects are extracted from randomly sampled PNG images,
by masking out transparent regions using their alpha chan-
nels.

The duration of each sequence is defined to be one
second. We randomly sample 3 or 4 control points over
similarity transformations in 2D for each foreground and
background object. Interpolation with piece-wise cubic spline
polynomials provide the continuous-time transformation of
all objects throughout the duration of each sequence. The
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Input EPE AE 1PE 2PE 3PE

EV-FlowNet [3] E 2.32 - 55.4 29.8 18.6
E-RAFT [4] E 0.79 2.85 12.74 4.74 2.68
RAFT [9] I 0.78 2.44 12.40 4.60 2.61
RAFT + GMA [1] I 0.94 2.66 12.98 5.08 2.96
Ours E 0.75 2.68 11.90 4.41 2.44
Ours E+I 0.69 2.42 9.70 3.42 1.88

TABLE I
RESULTS ON DSEC-FLOW. OUR METHOD OUTPERFORMS PRIOR WORK

EVEN WHEN ONLY USING EVENTS. ADDING IMAGE DATA FURTHER

IMPROVES PERFORMANCE.

generated similarity transformation trajectories are used to
both render images and compute ground truth pixel trajecto-
ries. To generate events, we apply the generative model of
events [49] on frames rendered at 1000 frames per second
on the full sequence.

Pixel Trajectory Ground Truth: The ground truth for
the pixel trajectories is computed with respect to a reference
time at 0.4 seconds. The pixel trajectory is expressed as pixel
displacements at different target timestamps with respect to
the original pixel location at the reference time. Overall, the
dataset consists of pixel trajectory ground truth at intervals of
10 milliseconds from 0.4 seconds (tr) up to time 0.9 seconds
(tt). Events outside the time interval where ground truth is
available (0.4 ≤ t ≤ 0.9) can be used as additional context.
We refer to the supplementary material for dataset examples
and a more detailed description.

V. EXPERIMENTS

This section has four distinct purposes. First, to show
quantitative real-world performance on DSEC-Flow on tra-
ditional two-view metrics. Second, to show quantitative
performance on the main task on MultiFlow: predicting
continuous-time pixel trajectories. Third, to show qualitative
performance for sim2real transfer using models trained on
our MultiFlow dataset. Finally, an ablation study highlights
the importance of the proposed components.

Implementation Details: Our models are implemented
in Pytorch and trained from scratch with random weights on
each dataset. We use AdamW [50] with gradient clipping
in the range of [−1,1] and a OneCycle learning rate with
a batch size of 3. On both datasets, we perform random
horizontal and vertical flipping as well as random cropping
of the input data.

A. DSEC-Flow

DSEC-Flow [4], [51] is a driving dataset with stereo event
and global shutter cameras. The purpose of this experiment
is to show the quantitative performance of our approach on
real-world data. However, we can only test on traditional
two-view optical flow metrics because no pixel trajectory
ground truth is available on DSEC-Flow. In other words,
for displacement prediction, the quality of the intermediate
continuous trajectory is irrelevant. Instead, only the final
displacement prediction is evaluated using end-point-error

(EPE) and angular error (AE) metrics [52]. We also report
the X-point error, a metric that reports the percentage of
pixels with EPE higher than X pixels.

For our experiments that combine image and event data,
we warp images to the event camera. Due to the small
baseline between both cameras, we can warp the image to
a plane at an infinite depth and re-project it into the event
camera coordinate frame. The disparity is negligible.

The performance of EV-FlowNet [3] and E-RAFT is taken
from Gehrig et al. [4]. We additionally train the frame-based
RAFT model [9] and GMA [1], an addition over RAFT, to
also compare against purely frame-based approaches.

Implementation Details: Our model is supervised with
the 2-view version of our loss proposed in equation (10).
This loss function is used because DSEC-Flow only provides
ground truth for pixel displacements. We use M = N =
5 bins for both the context and correlation voxel grid (see
Section III-B.1) and J = 5 views to compute the correlation
volumes. We also experimented with a higher number of
bins but did not observe significant improvements. Finally,
we choose a degree of 2 for the Bézier curves mostly to
account for non-linear motion due to change in depth. We
train our models for 250k iterations on a single Titan RTX
which takes up to 40 hours.

1) Quantitative Evaluation: Table I summarizes our re-
sults on the DSEC-Flow test set. Our approach, using both
event data and frames, achieves 0.69 EPE which is 11.5%
lower than RAFT [9] and 8 % lower than our own method
using only event data. Furthermore, our purely event-based
approach achieves an EPE of 0.75 which is 5% lower than the
EPE of 0.79 that E-RAFT achieves. Overall the performance
of E-RAFT [4] is comparable to RAFT while EV-FlowNet
[3] is not competitive. In our experiments, the GMA version
of RAFT does not outperform the RAFT baseline on this
dataset.

These results indicate that the proposed method, even
though designed to work for regressing pixel trajectories,
is competitive with two-view approaches on the task of
pixel displacement prediction. Note that we have not used
any additional ground truth information compared to the
baselines.

B. MultiFlow

The experiments on MultiFlow assess the pixel trajectory
regression capabilities. To achieve this, we introduce an
extension of EPE and AE to trajectories.

TEPE =
1

Nk

Nk∑
k

EPE(fpred(tk), fgt(tk)), (11)

where Nk ≥ 2. We analogously define TAE..
We train three previously published baselines for an ex-

tensive comparison. First, RAFT [9] and RAFT+GMA [1]
for a comparison against frame-based approaches. Second,
E-RAFT [4] for a comparison against a recent event-based
approach. We focus on these architectures because they are
related to our approach and achieve competitive performance
on public benchmarks [53], [51].
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(a) First Frame (b) Second Frame (c) Ours (d) RAFT+GMA [1]

Fig. 6. Predictions of our method (c) and the strongest baseline, RAFT+GMA [1] (d), on the MultiFlow dataset. Predictions are shown in blue and the
ground truth trajectory is visualized in red. The background is a colorization of the ground truth flow to highlight moving objects. Events are not shown
for conciseness but are also used by our method. Best viewed in PDF form.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

RAFT [9] I (6.89) (19.31) 7.42 6.71
RAFT + GMA [1] I (5.14) (16.35) 1.47 1.56
E-RAFT [4] E (6.70) (18.44) 7.56 6.19
E-RAFT + Bézier E 2.62 5.92 4.54 6.06
Ours E 1.85 4.61 3.37 4.80
Ours E+I 1.29 3.35 2.27 3.19

TABLE II
RESULTS ON MULTIFLOW. TEPE AND TAE ARE THE TRAJECTORY

VERSIONS OF EPE AND AE. METRICS IN BRACKETS ARE COMPUTED

USING A LINEAR MOTION MODEL, HIGHLIGHTING THAT THESE

METHODS ARE NOT ORIGINALLY DESIGNED FOR ACCURATE

TRAJECTORY PREDICTION. E-RAFT + BÉZIER REPRESENTS OUR

BASELINE MODEL CONSISTING OF E-RAFT THAT ESTIMATES BÉZIER

CURVES INSTEAD OF PIXEL DISPLACEMENTS.

Implementation Details: We train our method on the loss
defined by equation (10) while the two-view approaches are
trained on the two-view version of the loss [9]1. We supervise
our methods with 10 flow maps along the trajectory using
loss (10) and set the Bézier curve degree to 10 according to
section III-E.1. The ablation study in Section V-D.2 clarifies
the relationship between the loss function (10) and the degree
of the Bézier curve.

1It is also possible to use equation (10) to supervise two-view methods,
but it results in an unfavorable trade-off between trajectory end-point-error
error (TEPE) and end-point-error (EPE).

For the following experiments, we build J = 6 correlation
voxel grids representing the views at regular time intervals
starting from 0.4 seconds up to 0.9 seconds (i.e. the duration
where we have to predict the pixel trajectories in the dataset).
We discretize the time into regular bins resulting in N = 41
bins for the context voxel grid and M = 25 bins for the
correlation voxel grids. Later in section V-D.5, we show that
a coarse discretization with fewer bins leads to suboptimal
performance. We observed that the reason for this is the
overwriting of polarities in the voxel grid which we prevent
by choosing a more fine-grained temporal discretization.

We train our models for 200k iterations on a single Titan
RTX which takes up to 80 hours.

1) Quantitative Evaluation: In addition to E-RAFT and
RAFT variants using frames, we also compare against a
baseline that consists of the E-RAFT approach that estimates
Bézier curves instead of pixel displacements, as in the origi-
nal work. This approach, named E-RAFT + Bézier, is better
suited for non-linear flow estimation than prior work. Table
II summarizes the quantitative results. Trajectory metrics in
brackets indicate approaches that predict pixel displacements
(RAFT, RAFT + GMA, and E-RAFT), for which we employ
linear interpolation to compute the trajectory metrics. As
expected, the results suggest that these approaches are un-
suitable for accurate pixel trajectory estimation. The E-RAFT
+ Bézier baseline clearly improves not only the trajectory
metrics but also the 2-view metrics compared to these base-
lines. Our proposed model substantially reduces the TEPE
further from 2.62 to 1.85 by using correlation features to
guide the trajectory estimation. Finally, our approach benefits
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(a) First Frame (b) Second Frame (c) RAFT+GMA [1] (d) E-RAFT [4] (e) Ours
Fig. 7. Predictions of our method using only event data (e), E-RAFT [4] using events (d), and RAFT+GMA [1] using frames (c), on the HS-ERGB [6]
dataset. Predictions are shown in blue. The background is a colorization flow to highlight moving objects. Events are not shown for conciseness.

from combining events and frames: TEPE is reduced from
1.85 to 1.29 by 30% while the EPE also decreases by 32%.

When purely comparing 2-view metrics, RAFT + GMA
[1] achieves the lowest error by extending RAFT with a
self-attention mechanism on the context features to aggregate
motion features. However, RAFT+GMA is not designed for
trajectory prediction and, therefore, falls short in TEPE and
TAE compared to our approach.

2) Qualitative Analysis: Figure 6 illustrates the predic-
tions of our model, using events and frames, in comparison
to RAFT+GMA [1]. Our approaches successfully predict
the continuous trajectory, even if the objects leave the field
of view. This is not the case for the two-view method
RAFT+GMA, as seen in the first row of Figure 6. Evidently,
it fails at predicting the motion of objects that are missing in
the second view because it is impossible to establish a match.
The second row shows that our method can accurately predict
pixel trajectories while RAFT+GMA does well in predicting
the final pixel displacement.

C. Qualitative Sim2Real Results
To qualitatively assess the real-world capabilities of our

method, we use our purely event-based model, trained only
on the simulation dataset MultiFlow, and show predictions
on the HS-ERGB and BS-ERGB datasets [6], [7] in Figure
1 and 7. Although our method is only trained on MultiFlow,
it can correctly predict non-linear motion of moving objects
while the frame-based baseline [1] fails due to large motion
and ambiguities in the input frames.

D. Ablation Study
This section examines the influence of the main contribu-

tions of our model as well as additional design choices that
contribute to the performance of the method. We perform
the ablation studies on the MultiFlow because we require
accurate pixel trajectory ground truth that is not available on
DSEC or other event-based datasets.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

w/o Bézier E+I 6.36 18.37 6.66 5.18
w/o multi-view E+I 1.81 4.25 2.68 3.51
Reference E+I 1.29 3.35 2.27 3.19

w/o Bézier E 7.31 20.07 9.10 8.85
w/o multi-view E 2.62 5.92 4.54 6.06
Reference E 1.85 4.61 3.37 4.80

TABLE III
ABLATION EXPERIMENTS ON MULTIFLOW. FINAL MODEL SETTINGS

ARE UNDERLINED.

1) Main Components: One of the main contributions of
this paper are the iterative Bézier curve regression and the
correlation lookup applied at multiple timesteps/views along
the trajectories. We ablate both components using the full
model described in Section III as reference and summarize
the results in Table III.

First, we remove the Bézier curve regression and note a
drastic drop in performance on all metrics. Removing the
Bézier curves is equivalent to assuming linear motion. Linear
motion is not representative for this dataset and impairs the
utility of the correlation lookup. For example, if the model
is constrained to predict a linear trajectory during non-linear
motion, the correlation lookup will not be accurately placed
along the trajectory. This leads to correlation features that
are not informative.

Second, we remove the correlation lookups between the
reference view and intermediate views, denoted as the w/o
multi-view baseline in Table III, and note that both TEPE
and EPE increase between 18% and 42% with respect to the
event-based and hybrid reference model. We conclude that
both components are essential for achieving the best results.

8



1 5 10 15 20
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Fig. 8. Trajectory metrics vs Bézier curve degree. (a) shows the trajectory
EPE and (b) the trajectory AE as a function of the Bézier degree. We
evaluate both at 20 Hz (every 50 milliseconds) and at 100 Hz (every 10
ms). In both cases we can observe overfitting of the predicted trajectories
when we evaluate at 100 Hz. This can be explained with the fact that the
loss function was only applied every 50 milliseconds during training.

2) Degree of the Bézier Curves: The goal of this experi-
ment is to answer the question: Which Bézier curve degree
is appropriate for our model?

To answer this question, we train 5 different models with
Bézier curve degrees 1, 5, 10, 15, and 20 using frames
and events as input to the model. The supervision on pixel
trajectories at training time is at 20 Hz, that we supervise
the model on the pixel trajectory every 50 milliseconds.

Intuitively, one could surmise that a higher Bézier degree
always improves the performance. Figure 8 indeed shows
that a higher Bézier degree improves performance, when the
models are evaluated at 20 Hz. The models were also trained
with a supervision signal at 20 Hz, that is with supervision
at regular time intervals of 50 milliseconds. Interestingly, an
evaluation of these models at a higher frequency of 100 Hz
reveals a decrease in performance for the model with a Bézier
degree higher than 10. The reason for that is that we observe
a test-time overfitting of the predicted trajectory to the
frequency with which the model was supervised. We do not
observe this overfitting issue at 20 Hz evaluation frequency
because the model is able to accurately predict the trajectory
at this frequency. This observation is reminiscent of the
overfitting phenomenon in the much simpler polynomial
regression problem in statistics.

The answer to the original question is: For accurate pixel
trajectory predictions, the Bézier degree should be chosen
equal to the number of regular supervision points along the
pixel trajectories. The degree can be set higher than the num-
ber of supervision points to potentially improve performance
on the timestamps of interest. However, the pixel trajectories
may not be as accurate anymore. An example for this is our
DSEC-Flow experiments where we have only 1 supervision
point (2-view) but found that a Bézier degree of 2 improves
the performance on the 2-view metric. This is a reasonable
approach as long as the downstream application does not
require accurate pixel trajectories.

3) Loss Function: This experiment examines the influence
of the trajectory loss on trajectory and 2-view metrics. We
train two additional models with the 2-view loss; one using
only events and a second one using both frames and events.
Table IV summarizes the results.

For both input variations, the error metrics substantially
decrease when the model is trained with the trajectory loss.
This reduction is evident for both the trajectory metrics and
also the 2-view metrics. This indicates, that the trajectory loss
function is a better choice for the proposed method than the
2-view loss. Finally, the results in Table IV indicate that we
could further reduce the errors of the DSEC-Flow experiment
with the appropriate ground truth.

Trajectory Metrics 2-View Metrics
Input TEPE TAE EPE AE

2-View Loss E+I 16.47 20.57 3.72 5.48
Trajectory Loss E+I 1.29 3.35 2.27 3.19

2-View Loss E 16.99 21.83 5.95 8.57
Trajectory Loss E 1.85 4.61 3.37 4.80

TABLE IV
THE TRAJECTORY LOSS REFERS TO THE LOSS FUNCTION OF EQUATION

(10) OF THE MAIN PAPER, WITH Nk > 1. THE 2-VIEW LOSS REFERS TO

THE SAME LOSS FUNCTION WITH Nk = 1. TRAINING OUR METHOD

WITH THE TRAJECTORY LOSS LEADS TO DRASTICALLY LOWER ERRORS

EVEN FOR THE 2-VIEW METRICS.

4) Number of Correlation Lookups: Table V shows that
increasing the number of correlation lookups improves per-
formance consistently on all metrics. However, substantially
increasing the number of correlation volumes incurs higher
memory consumption and increases computational demand.
This result suggests a trade-off between performance and
compute and memory requirements. Note that the number of
correlation volumes is the number of correlation lookups (in
time) + 1 because the correlation volume at the reference
time has to be taken into account as well.

Trajectory Metrics 2-View Metrics
# Correlation Lookups TEPE TAE EPE AE

1 1.81 4.25 2.68 3.51
3 1.35 3.43 2.34 3.21
5 1.29 3.35 2.27 3.19

TABLE V
INCREASING THE NUMBER OF CORRELATION VOLUMES/LOOKUPS IN

TIME IMPROVES PERFORMANCE. THE UNDERLINED ROW REFERS TO THE

REFERENCE MODEL USED IN THE EXPERIMENTS.

5) Voxel Grid Temporal Resolution: The voxel grid serves
as a discrete representation of event data, inevitably leading
to some loss of information during its formation. In partic-
ular, a decrease in the number of temporal bins not only
reduces the number of input channels but also intensifies the
quantization of the signal. In our study, detailed in Table V-
D.4, we investigate how the temporal resolution of the voxel
grid affects performance on the MultiFlow dataset. The bin
size in this context refers to the temporal interval between
consecutive bins. Consistent with expectations, Table V-D.4
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demonstrates that a finer bin size, corresponding to higher
temporal resolution, results in improved performance. Note
that a bin size of 0.0125 represents the voxel grid resolution,
as detailed in section V-B, which was used for the main
results on the MultiFlow dataset.

Trajectory Metrics 2-View Metrics
Bin Size TEPE TAE EPE AE

0.1 1.81 4.53 2.87 3.97
0.05 1.51 3.82 2.61 3.63
0.025 1.40 3.56 2.45 3.41

0.0125 1.29 3.35 2.27 3.19

TABLE VI
DECREASING THE BIN SIZE OF THE VOXEL GRID IMPROVES

PERFORMANCE. EACH BIN IS ASSIGNED A SPECIFIC TIMESTAMP AND

THE BIN SIZE REFERS TO THE ∆t BETWEEN THE BINS. THE UNDERLINED

ROW REFERS TO THE REFERENCE MODEL USED IN THE EXPERIMENTS.

E. Runtime Analysis
Table VII shows inference time in milliseconds, parameter

count in millions of parameters and memory consumption
at inference time on samples from the MultiFlow dataset.
Overall, our proposed method has higher demands on the
presented metrics compared to RAFT [9], which is expected
because it is a generalization of the RAFT architecture.

Input Inference time [ms] Params Memory [GB]

RAFT [9] I 52 5.3 M 1.20
E-RAFT [4] E 56 5.3 M 1.20
Ours E 77 5.6 M 1.65
Ours E+I 84 5.9 M 1.65

TABLE VII
COMPARISON OF INFERENCE TIME, PARAMETER COUNT AND MEMORY

CONSUMPTION ON MULTIFLOW. THESE NUMBERS HAVE BEEN

OBTAINED ON A TITAN RTX GPU WITH AN IMPLEMENTATION USING

PYTORCH VERSION 1.12.1

VI. LIMITATIONS

The current implementation computes the dot products
between all paired features at once, which incurs O(N2)
space complexity where N is the number of spatial features.
This limitation can be overcome by computing dot products
on-demand, as original proposed by Teed et al. [9]. Another
limitation of the proposed method is that we cannot compute
the pixel trajectories for a sequence longer than the current
input to the model. We can approximate longer trajectories
by concatenating multiple shorter sequences via interpolation
at the reference timestamps. A more elegant solution could
be achieved by designing a recurrent model that can track
pixels without assuming a fixed sequence length or duration.
Finally, the number of correlation lookups is a fixed parame-
ter that cannot be changed at inference time. As a result, we
must define at training time how many correlation lookups
can be afforded during inference time.

VII. CONCLUSION

We have introduced a method for estimating continuous-
time pixel trajectories from events and frames. The proposed
approach generalizes the frame-based [9] and event-based
[4] RAFT architecture by regressing Bézier curves and uses
the pixel trajectories to extract correlation features along the
temporal axis. Our experimental results demonstrate that the
proposed method can accurately predict continuous pixel
trajectories while at the same time outperforming strong
baselines not only in simulation but also on real data. Finally,
our sim2real results suggest that the new MultiFlow dataset
can also be used to pretrain pixel trajectory regression models
for downstream applications.
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Supplementary Material

I. INFLUENCE OF TRAJECTORY LENGTH ON THE
TRAJECTORY ERROR

In Figure 1, we examine how the trajectory length influ-
ences the trajectory error on the MultiFlow. As expected, the
trajectory error increases when the trajectory becomes longer
because the task complexity increases. For example, longer
trajectories correlate with more complex motion patterns and
occlusions which are particularly challenging for optical flow
methods.
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Fig. 1. Trajectory end-point-error (TEPE) as a function of the trajectory
length. We use the log2 scale to better capture the full range of trajectory
length and errors. The error increases with the trajectory length, and image
data generally lowers the error.

II. NETWORK ARCHITECTURE

Figure 2 shows the neural network architecture used
throughout this paper. The architecture is based on the RAFT
neural network [1] with modifications highlighted in red. We
use the same encoder architecture to extract context features
from voxel grids (events) and, optionally, the image at the
reference timestamp, as well as correlation features from
both modalities. This encoder architecture is identical to the
RAFT context and correlation encoder. Instead, the update
block requires a few modifications:

• Instead of encoding pixel displacements (flow), we
encode the Bézier curve parameters Pk−1 from the
previous output of the update block.

• We add a context encoder to extract motion features
directly from event data and optionally use the image
context encoder.

• We predict 2n scalars per feature of the update block
to estimate the increment of n two-dimensional Bézier
curve control points ∆Pk.

The upsampling module, omitted for brevity, is identical to
the one used in RAFT.

III. MULTIFLOW DATASET GENERATION

This section provides a more formal and detailed overview
of the data generation process that was used to create the
MultiFlow dataset.

The duration of each sequence in the dataset is fixed
to one second. We sample either 3 or 4 (random choice
of 50% probability each) control points in the space of
pixel translation, scale, and rotation of the foreground (FG)
and background (BG) objects in the image plane. The time
assigned to control points is sampled from the range [0, 1]
while ensuring strictly increasing values to maintain the
temporal order.

The control points are sampled according to the following
discrete-time process with parameters shown in Table I:

Xk+1 =

{
γ̂ · X̂Det

k+1 + (γ̂ − 1) · X̂Stoch
k+1 (α̂ = 0) ∧ (β̂ = 0)

Xk (α̂ = 1) ∨ (β̂ = 1)
(1)

where

X̂Det
k+1 = Xk +

tk+1 − tk
tk − tk−1

(Xk −Xk−1) (2)

refers to the deterministic part of the process that uses
a constant velocity model. It is inspired by the law of
conservation of momentum from classical mechanics. tk is
the time associated with control point k. To introduce more
variability in the data generation process, we introduce a
stochastic process:

For translation and rotation:

X̂Stoch
k+1 = Xk +∆X ∆X ∼ Uni(−θ, θ) (3)

For scale:

X̂Stoch
k+1 = Xk ·∆X ∆X ∼ (1 + δ0)

(2δ1−1), (4)
δ0 ∼ Uni(0, θ), δ1 ∼ Bern(0.5)

Uni stands for the continuous uniform distribution and
Bern refers to the Bernoulli distribution.
α̂ ∼ Bern(α) models the probability that the similarity trans-

formation (translation, rotation and scale) of the object
remains constant during the whole sequence.
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Fig. 2. Neural network architecture adapted from RAFT to predict Bézier curves. Modifications in the update block are highlighted in red. Context and
correlation encoder architectures remain identical to RAFT, with an added context encoder for event data. n refers to the degree of the Bézier curve.

β̂ ∼ Bern(β) is sampled separately for each component
(translation, rotation or scale) of the similarity transfor-
mation and models the probability that the component
remains constant during the sequence.

γ̂ ∼ Uni(0, γ) is sampled separately for each component
(translation, rotation or scale) of the similarity trans-
formation and models the degree of the constant ve-
locity component. For γ̂ = 1, the new control point
is computed deterministically with a constant velocity
model according to equation (2). γ̂ = 0 corresponds to
a purely stochastic update according to equations (3) or
(4). γ̂ ∈ (0, 1) results in a convex combination of both
as shown in equation (1).

Component α β γ θ

Translation BG
0.1

0 0.8 30
Rotation BG 0.7 0.6 10
Scale BG 0.4 0.3 0.15

Translation FG
0

0 0.9 120
Rotation FG 0.3 0.6 30
Scale FG 0.3 0.3 0.30

TABLE I
PARAMETERS OF THE DISTRIBUTION OF THE TRANSFORMATION

COEFFICIENTS FOR FOREGROUND OBJECTS (FG) AND BACKGROUND

(BG). THE VALUES OF θ ARE SHOWN IN pixels FOR TRANSLATION, IN

degree FOR ROTATION AND IN dimensionless quantity FOR SCALE. THE

VALUES OF α AFFECT THE OVERALL SIMILARITY TRANSFORMATION

AND THEREFORE BELONG TO TRANSLATION, ROTATION AND SCALE

SIMULTANEOUSLY.

We compute continuous-time trajectories over similarity

transformations via cubic spline interpolation on the K ∈
{3, 4} acquired control points X0, . . . , XK−1. It would be
possible to sample a higher number of control points, but we
found that 4 control points are sufficient to capture interesting
non-linear motion that we could also observe in real-world
applications of our algorithm (see Fig. 1 and 7 in the paper).

Pixel Trajectory Ground Truth: The ground truth for
the pixel trajectories is computed with respect to a reference
time at 0.4 seconds. The pixel trajectory is expressed as pixel
displacements at different target timestamps with respect to
the original pixel location at the reference time. Overall, the
dataset consists of pixel trajectory ground truth at intervals
of 10 milliseconds up to time 0.9 seconds. The first 0.4 and
last 0.1 seconds can be used as additional context.

Visual Examples: Figure 3 shows examples of frames at
reference timestamp in column (a) and target timestamp in
column (b) as well as corresponding predictions of our model
trained on the dataset. Frames between the reference and
target timestamps are used to generate events that are used by
our model to predict the continuous-time pixel trajectories.
In column (c) we visualize the predicted pixel displacement
between the reference and target timestamp in the Sintel
colorization scheme [2].
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(a) First Frame (b) Second Frame (c) 2-View Prediction (d) Trajectory Prediction
Fig. 3. Predictions of our model (E+I) on our MultiFlow test set. (a) shows the frame at the reference time, (b) the frame at the final timestamp of the
trajectory, (c) shows the predicted pixel displacement between reference and final timestamp, and (d) shows the full prediction of the pixel trajectories.
The predicted trajectory is shown in blue and the ground truth in red. The background of (d) is the colorization of the 2-view ground truth.
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