
Aerial-guided Navigation of a Ground Robot among Movable Obstacles

Elias Mueggler, Matthias Faessler, Flavio Fontana and Davide Scaramuzza

Abstract— We demonstrate the fully autonomous collabora-
tion of an aerial and a ground robot in a mock-up disaster
scenario. Within this collaboration, we make use of the in-
dividual capabilities and strengths of both robots. The aerial
robot first maps an area of interest, then it computes the
fastest mission for the ground robot to reach a spotted victim
and deliver a first-aid kit. Such a mission includes driving
and removing obstacles in the way while being constantly
monitored and commanded by the aerial robot. Our mission-
planning algorithm distinguishes between movable and fixed
obstacles and considers both the time for driving and removing
obstacles. The entire mission is executed without any human
interaction once the aerial robot is launched and requires a
minimal amount of communication between the robots. We
describe both the hardware and software of our system and
detail our mission-planning algorithm. We present exhaustive
results of both simulation and real experiments. Our system
was successfully demonstrated more than 20 times at a trade
fair.

MULTIMEDIA MATERIAL

Demonstration of our system:
http://www.youtube.com/watch?v=C5I190lzDdQ

Presentation at the AUTOMATICA’14 trade fair in Munich:
http://www.youtube.com/watch?v=OFPv3BegbFg

I. INTRODUCTION

Since 2001, rescue robots have been deployed for disaster
response and have been used at least 29 times to date [1].
For example, after the earthquake and tsunami in Fukushima,
Japan in 2011, ground robots were utilized to explore the
situation in the contaminated reactor building [2].

In all previous disaster response missions, the robots were
remote-controlled by trained professionals. Three operators
per robot were required on average and the executed missions
took very long (cf. [1]). Since time is the most critical
factor in rescue missions, we propose to deploy teams of
heterogeneous robots, namely ground and aerial robots, to
speed up disaster response. Their sense-act capabilities are
complementary: ground robots can carry high payloads and
manipulators. However, their field of view is limited and they
can be blocked by obstacles on the ground. Aerial robots, in
contrast, can overcome obstacles with ease and can provide
a bird’s-eye view, which is ideal for mapping and monitoring
tasks.

To reduce the number of required operators and speed
up their mission, the robots must expose a good level of
autonomy. Instead of sending low-level commands, they
must be able to autonomously execute high-level tasks such
as “grasp that object” or “fly to location X”. This allows the

The authors are with the Robotics and Perception Group, University of
Zurich, Switzerland—http://rpg.ifi.uzh.ch.

(a) Our robots operating in a mock-up disaster site

(b) Corresponding mission plan

Fig. 1: After mapping the area, the aerial robot is guiding
the ground robot to the goal location. All paths are blocked
by obstacles, some of which can be removed by the ground
robot.

operator to focus on the mission instead of low-level robot
details. For reliable local navigation, robots must rely only on
their onboard sensors, since the communication infrastructure
is likely to be affected during disaster situations.

In this work, we demonstrate the benefits of a team of het-
erogeneous robots in a mock-up search-and-rescue scenario
(see Figure 1a): a victim in an unknown environment must
be found and provided with a first-aid kit. We first deploy
an aerial robot that maps the environment and searches for
the victim. Then, a mission is planned for a ground robot
to reach the victim and provide it with a first-aid kit as fast
as possible. Both the time required for driving and rubble
removal are considered to plan the mission. Finally, the aerial
robot guides the ground robot along the computed path to
the victim.

The remainder of this paper is organized as follows. In
Section II, we review related work both on collaboration of
aerial and ground robots and on Navigation Among Movable
Obstacles (NAMO). Our robots and the mock-up disaster
scenario are introduced in Section III. In Sections IV, V,
and VI we detail the mapping, planning, and execution of the

http://www.youtube.com/watch?v=C5I190lzDdQ
http://www.youtube.com/watch?v=OFPv3BegbFg
http://rpg.ifi.uzh.ch


missions, respectively. Finally, we evaluate the performance
of our mission planning algorithm and the entire system in
Section VII.

II. RELATED WORK

We first review related work on collaboration of ground
and aerial robots in the search-and-rescue context. Then we
provide a literature overview on Navigation Among Movable
Obstacles (NAMO).

A. Collaboration of Aerial and Ground Robots

After the 2012 Mirandola earthquake in Italy, aerial and
ground robots were deployed to build 3D maps of the interior
of damaged buildings [3]. The robots were remote controlled
and high stress and cognitive overload of both the aerial and
ground robot operators were reported.

In [4], collaborative mapping of a damaged building after
the 2011 Tokuhu earthquake with a ground and an aerial
robot was presented. First, the ground robot was manually
controlled through the building creating a 3D voxel grid.
Second, locations inaccessible for the ground robot were
mapped by the aerial robot.

Teams of aerial and ground robots for monitoring and
tracking tasks were presented in [5]. Aerial robots search
for targets which are then verified and tracked by ground
robots. Only limited, high-level user interaction was required.
However, the main focus was on an ad-hoc wireless network
that is maintained during the mission.

In [6], an aerial robot is described to support ground
personnel in searching for victims. Several search strategies
are discussed. The system was tested outdoors with rescue
professionals.

In [7], an aerial robot is described to assist a ground robot
to reach a goal location. However, only local planning was
performed and the aerial robot was piloted manually.

Since virtually all robots in today’s missions are remote
controlled, human-robot interaction for these scenarios was
investigated by several authors, e.g. [8], [9]. Also, the re-
cently started European project SHERPA [10] focuses on
the interaction and collaboration of humans with both aerial
and ground robots in alpine rescue missions.

Our work differs from those mentioned above in that we
do not only map the environment, but also use these maps for
mission planning and environment interaction. In particular,
we make use of the ground robot’s capability to interact with
the environment using its robotic manipulator. In addition,
our system is fully autonomous: no user interaction is
required at any point after launching the aerial robot.

B. Navigation Among Movable Obstacles (NAMO)

Planning in modifiable environments was introduced
in [11]. It was shown that, even for the simplest cases, the
problem is NP-hard. A heuristic search algorithm was pre-
sented in [12]. More recently, Navigation Among Movable
Obstacles (NAMO) [13], [14] became an active research
topic in the field of humanoid robots. While very similar
to our case, there is a difference in how we can manipulate

1

2

3

Fig. 2: A closeup of our quadrotor: down-looking camera (1),
Odroid U3 quad-core computer (2), and PIXHAWK autopi-
lot (3).

obstacles. In all above-mentioned papers, the obstacles could
be pushed by the robot. Here, contrarily, we can lift the
obstacles and place them again at an arbitrary location.

III. SYSTEM OVERVIEW

We propose a system consisting of a quadrotor equipped
with a monocular camera (see Figure 2) and a ground robot
consisting of an omni-directional base and a 5-DOF manipu-
lator (see Figure 3). When operating together, the two robots
have all the capabilities we require for the considered search-
and-rescue missions. Combining all the required capabilities
in one single robot would render the system impractical and
less flexible.

We use a laptop as ground station to visualize the progress
of the mission. On the ground station, we also run our
mission-planning algorithm and send high-level commands
to both robots.1 As soon as the robots have received their
high-level commands, they both navigate fully autonomously
while running all the required algorithms onboard. In the
following, we describe the quadrotor platform, the ground
robot, and the mock-up disaster scenario in more detail.

A. Aerial Robot

We built our quadrotor from selected off-the-shelf com-
ponents and custom 3D-printed parts (see Figure 2). The
components were chosen according to their performance and
their ability to be easily customized.

Our quadrotor relies on the frame of the Parrot
AR.Drone 2.02 including their motors, motor controllers,
gears, and propellers. The platform is powered by one
1350mA h LiPo battery, which allows a flight time of 10min.

We completely replaced the electronic parts of the
AR.Drone by a PX4FMU autopilot and a PX4IOAR adapter
board developed in the PIXHAWK Project [15]. The
PX4FMU consists, among other parts, of an IMU and a
micro controller to read the sensors, run some low-level
control to track desired body rates, and command the mo-
tors. Additionally to the PX4 autopilot, our quadrotors are

1Note that this could also run onboard one of the robots, rendering the
laptop unnecessary.

2http://ardrone2.parrot.com/

http://ardrone2.parrot.com/


equipped with an Odroid-U3 single-board computer.3 It con-
tains a 1.7GHz quad-core processor running XUbuntu 13.104

and ROS.5 The PX4 micro controller communicates with
the Odroid board over UART, whereas the Odroid board
communicates with the ground station over 5GHz WiFi.

Our platform is easily reparable due to off-the-shelf com-
ponents, inexpensive (1000USD), lightweight (below 450 g),
and therefore safe to use.

To stabilize the quadrotor, we make use of the gyros
and accelerometers of the IMU on the PX4FMU as well as
a downward-looking MatrixVision mvBlueFOX-MLC200w
752× 480-pixel monochrome camera.6

The images from the downward-looking camera are pro-
cessed on the Odroid by means of our Semi-Direct Vi-
sual Odometry (SVO7) pipeline [16]. The visual-odometry
pipeline outputs an unscaled pose which is then fused with
the IMU readings in an Extended Kalman Filter framework
(Multi Sensor Fusion (MSF) [17]) to compute a metric state
estimate. From this state estimate and a desired trajectory, we
compute the desired body rates and collective thrust, which
are then sent to the low-level controller on the PX4FMU.

B. Ground Robot

We use a KUKA youBot [18] as ground robot (see Fig-
ure 3). It consist of a mobile base and a 5-DOF manipulator
with a two-finger gripper. The mobile base includes four
omni-directional wheels, which allow the robot to also move
sideways and rotate on the spot. This is a great advantage
over standard wheels when navigating in confined spaces.
Furthermore, the base is designed robust enough to carry
a payload of 20 kg. The manipulator is able to lift up to
0.5 kg with its gripper. For controlling the arm and the base,
the youBot comprises a mini ITX PC board with embedded
Intel R©Atom Dual-Core CPU running an Ubuntu operating
system and ROS. To grasp objects fast and reliably, we
developed a torque controller for the youBot arm [19], which
allows to precisely track trajectories with its gripper.

To measure the relative position of obstacles in front of
the youBot, we mounted a Hokuyo URG-04LX-UG018 laser
scanner in front of its base. Finally, for this rescue mission,
the youBot carries a first-aid kit on the side of its base as
shown in Figure 3.

C. Mock-up Disaster Site

In this work, we consider a search-and-rescue mission
after a disaster where robots are sent into areas that are too
dangerous to be entered by human rescuers.

As a mock-up disaster site for our experiments (see
Figure 4), we consider an area of known size (in our case

3http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G138745696275

4http://www.xubuntu.org/
5http://www.ros.org/
6http://www.matrix-vision.com/USB2.

0-single-board-camera-mvbluefox-mlc.html
7http://github.com/uzh-rpg/rpg_svo
8http://www.hokuyo-aut.jp/02sensor/07scanner/

download/products/urg-04lx-ug01/

1

2
3

Fig. 3: KUKA youBot equipped with an AprilTag (1), a laser
scanner (2), and a first-aid kit (3).

12

3 4

Fig. 4: Mock-up disaster site elements: fixed obstacle (1),
movable obstacle (2), goal (3), and origin tag (4).

4m× 6m) with different types of obstacles: some of them
can be removed by the ground robot (“movable obstacles”)
and some can only be avoided (“fixed obstacles”). Further-
more, there is a goal location that represents a victim, which
has to be provided with a first-aid kit by the ground robot as
fast as possible. The locations of the obstacles and the goal
are not known a priori.

All obstacles, the goal, and the ground robot are marked
with an AprilTag [20] such that they can easily be detected in
the camera image of the flying robot (see Figure 2). We make
use of an additional AprilTag as origin tag, which provides
a common reference frame for both robots. The origin tag
is also used as reference point to define the search area that
the aerial robot has to cover.

IV. MAPPING

To map the defined area, we compute a lawn-mower
pattern covering the entire area for the flying robot to take
images. Images are only taken at specified locations on the
lawn-mower pattern instead of being streamed continuously
in order to minimize the required communication band with.
These images, together with the onboard pose estimate of
the quadrotor, are sent to the ground station while the flying
robot is mapping. The obstacles are then detected in the

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
http://www.xubuntu.org/
http://www.ros.org/
http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
http://github.com/uzh-rpg/rpg_svo
http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/urg-04lx-ug01/
http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/urg-04lx-ug01/


Fig. 5: The movable obstacle (red) can be grasped by the
ground robot from positions on a circle around it. To avoid
a collision with the fixed obstacle (black), the robot center
cannot move inside the inflated area (gray). Thus, only the
grasp locations marked in green are feasible.

image by their attached tag. To build a metrically consistent
map, we run a pose-graph optimization over all detected
tags of all images. We initialize the tag poses with the
estimate of the quadrotor pose and run the optimization using
iSAM [21].

The detected fixed obstacles are then inserted into a grid
map together with the boundaries of the defined area as
illustrated in Figure 8 in black. In addition to this grid
map, we also provide the planner with the position of the
movable obstacles, the pose of the ground robot, and the
goal location.

V. MISSION PLANNING

When planning a mission for the ground robot, we con-
sider its position to be the center point of its base and
we represent the map as a grid where we inflate all fixed
obstacles by the radius of the robot base. To grasp an
obstacle, the robot’s position must be on a circle around the
obstacle with a radius corresponding to the distance from
the gripper to the base center (see Figure 5). We denote
the points on this circle as possible grasp locations of that
obstacle.

Our planning is based on the A* algorithm with the
mission-execution time as cost. First, for each movable
obstacle, we calculate the minimum cost to the goal location
when no other movable obstacle would be present. This gives
us a lower bound on the cost to go from each movable
obstacle to the target location and is therefore an admissible
heuristic. Then, we search for every feasible shortest path
from the start location to any of the grasp locations of every
movable obstacle or the goal location directly. For every path
to a movable obstacle that we find, we add the cost to remove
it and compute all feasible paths to all other removable
obstacles or the goal location. All the possible missions that
are created this way are stored in a priority queue according
to their estimated cost. This process is continued until we
find a feasible mission to the goal location.

Until this point, we do not consider the cost of driving
the obstacle to a feasible place location, which can be
necessary as described further in Section V-A. Therefore, all
the computed costs are lower bounds and not necessarily the
actual costs of the corresponding mission. When a feasible
mission to the goal is found, we compute the precise cost
including possible driving backwards to place obstacles. Note

that this can only increase the cost of the mission. If the
actual cost of the considered mission is now higher than the
estimated cost of other missions in the priority queue, we
have to continue the planning steps for these missions as
described above. The time-optimal mission is found if its
actual cost is smaller than the estimated cost of every other
mission in the priority queue. This procedure is summarized
in Algorithm 1.

Algorithm 1 Mission Planning

calculate lower bound on cost to go from each obstacle
min cost←∞
add empty mission with start pose to Priority Queue (PQ)
while cost(PQ.top()) < min cost do

current mission← PQ.top()
add remaining obstacles to map
for all paths to these obstacles do

if lower bound of new mission < min cost then
new mission← current mission+ path
add new mission to PQ

end if
end for
compute path to goal
if path is feasible then

current mission← current mission+ path
refine mission
if cost(current mission) < min cost then

min cost← mission cost
best mission← current mission

end if
end if

end while

A. Place Positions of Removed Obstacles

When removing an obstacle, we ideally try to place it on
the side of the ground robot while the robot stands still in
order to save time. Nonetheless, in narrow passages (e.g.,
in a passage as in Figure 6), the robot cannot just place
the obstacle to the left or right, but needs to carry it to a
feasible place location. To do so, we search for unoccupied
place locations along two lines parallel to the driving path.
First, we search in forward direction up to the next obstacle
grasp location. If we cannot find a feasible place position
in that direction, we then also search in backward direction.
This happens for example if two obstacles are in a narrow
passage (cf. Figure 6): the first obstacle must be carried out
of the passage by driving backwards. The second obstacle
can be placed when exiting the passage.

B. Path Refinement

We search paths on the grid map using single-source Di-
jkstra’s algorithm. However, these paths should be smoothed
for a ground robot to be executed (see Figure 7). We therefore
refine these paths using a simple algorithm (see Algorithm 2).

Although there exist more sophisticated planning algo-
rithms on grid maps (such as Theta? [22]), this is of minor



(a) Drive to first obstacle and grasp it (b) Search for possible place location (c) Drive backwards to place first obstacle

(d) Drive to second obstacle and grasp it (e) Search for possible place location (f) Drive and place second obstacle

Fig. 6: To illustrate our obstacle-placing algorithm, we consider a narrow corridor with two movable obstacles inside. Fixed
obstacles (black) are inflated to mark the area where the robot cannot drive (light gray) or cannot place obstacles (dark
gray). Green dots indicate the grasp locations of movable obstacles (red). Since we place obstacles to the side of the robot,
we search along parallel lines of the path (blue) for place locations. First, we search in forward direction (yellow) up to the
next grasp location. If we cannot find a place location there, we start searching in backward direction (violet). The chosen
obstacle place position is indicated in orange. The time for driving backwards is taken into account by our mission-planning
algorithm which possibly affects the optimal mission (cf. Figures 9a and 9b). An example of a corridor with more movable
obstacles is shown in Figure 10.

Fig. 7: The output of Dijkstra’s algorithm (red) is refined
(green) to find a smoother trajectory for the ground robot.

concern in our situation, where the robot is much larger than
the grid resolution.

VI. MISSION EXECUTION

A feasible mission plan for the ground robot consists
of a series of actions such as driving straight line path
segments, removing obstacles, and delivering the first-aid kit.
Each of these actions for the ground robot are commanded
by the aerial robot in an iterative fashion. Once an action
is commanded, the ground robot executes it without any
external feedback. The aerial robot is then following the
ground robot to command the next action. Commanding
the ground robot in this iterative fashion to perform open-
loop maneuvers eliminates problems with communication
delays. Furthermore, it keeps the required communication
at a minimum.

When the ground robot has to drive a straight line path
segment, it is first localized in the map by the aerial robot.
It is then commanded to execute a motion relative to the

Algorithm 2 Optimizing Grid Map Paths

add first cell of old path to new path
for all cells in old path do

if no line of sight to last cell in new path then
add previous cell of old path to new path

end if
end for
add last cell of old path to new path
for all cells in new path do

update orientation such that it points to next cell
end for

current location using its wheel odometry without feedback
from the aerial robot. When the ground robot has executed
the open-loop motion, it is again localized in the map by
the aerial robot to compensate for accumulated drift of the
wheel odometry. To remove an obstacle, the ground robot
is commanded to drive to the chosen grasp location such
that it can reach it with its gripper. When in front of the
obstacle, the ground robot makes use of its laser scanner
to measure the relative position of the obstacle precisely.
It then grasps the obstacle and places it to a location that is
again commanded by the aerial robot. After removing all the
obstacles in the way, the ground robot can approach the goal
location. Since we want to deliver the first-aid kit directly
onto the goal location, the ground robot stops in front of the
goal location such that it is within the gripper’s reach (cf.
Figure 8). Once it is there, the ground robot is commanded
to place the first-aid kit.



VII. RESULTS

In this section, we evaluate both our mission planner and
the overall system performance. We analyze the mission
plans for special, engineered cases. Further, we evaluate
the computation time depending on the number of movable
obstacles in the scene. Finally, we present the overall system
performance during many demonstrations at a trade fair.

As parameters for the mission planning, we used 0.2m/s
driving speed, 30 ◦/s rotational speed, and 15 s for grasping
and placing an obstacle. We set the driving speeds of the
youBot accordingly and measured the required grasp-and-
place. For creating the grid map, we used a cell size of 5 cm.

A. Mission Planning

We evaluate our mission-planning algorithm using spe-
cial and random cases. The visualization of the output is
explained in Figure 8.

We demonstrate the influence on the optimal mission when
driving backwards to place an obstacle in Figure 9. Even if
the south path in Figure 9a is shorter, the mission time would
be longer due to the time required for additional driving
backwards to place the first obstacle. However, if the north
path is blocked, the mission planner will choose the other
path (see Figure 9b). If many obstacles are in a small corridor
as in Figure 10, the ground robot must carry all but one out
of it backwards to be able to traverse the corridor.

In Figure 11, we demonstrate the influence of the time
required to remove an obstacle on the optimal mission.

Randomly generated scenes and the respective missions
are shown in Figure 12.

12

34 5

6
78

Fig. 8: Explanation of mission planner output: fixed ob-
stacle (1), start location of the ground robot (2), path to
drive (3), grasp location (4) of movable obstacle (5), place
location (6), and goal (7). From the end of the path (8), the
first-aid kit is delivered to the goal.

To evaluate the computational performance of our mission
planner, we fixed a scene (cf. Figure 12a) and varied the
number of movable obstacles. For every chosen number of
movable obstacles we run 50 trials with randomly placed
movable obstacles to measure the computation time. The
results are shown in Figure 13. In two out of 250 cases,
the planner could not find a feasible mission.

(a) Our mission-planning algorithm computes the fastest mission
and not the shortest path. Therefore, it chooses the north path since
it requires no driving backwards to place obstacles.

(b) If the path of Figure 9a is blocked by an additional fixed
obstacle, the south path is chosen. Note that this mission takes
longer than the one above, since the robot has to drive backwards
to place the obstacle.

Fig. 9: Placing movable obstacle might require additional
backwards driving and, thus, increase the mission time.
Therefore, the output of our mission-planning algorithm can
be different from the shortest path. Color-coding is explained
in Figure 8.

Fig. 10: All but one obstacle in a narrow corridor must be
carried back to where the robot entered the corridor. Only
the last obstacle is placed at the end of the corridor. Color-
coding is explained in Figure 8.

5 10 15 20 25

10−1

100

101

102

Number of movable obstacles

M
is

si
on

pl
an

ne
r

tim
e

[s
]

Fig. 13: Computation time of our mission planning algo-
rithm for different numbers of movable obstacles. For every
chosen number of movable obstacles we run 50 trials while
placing the obstacles randomly. Example scenes are shown
in Figure 12.



(a) Removal time 5 s (b) Removal time 11 s (c) Removal time 15 s

Fig. 11: The time-optimal mission depends on the time required to remove an obstacle. Color-coding is explained in Figure 8.

(a) 15 movable obstacles (b) 15 movable obstacles (c) 20 movable obstacles

Fig. 12: Movable obstacles are placed randomly in a scene to evaluate the computation time of our mission-planning
algorithm. Results are shown in Figure 13 and color-coding is explained in Figure 8.

B. Overall System Performance

Our system was demonstrated at the AUTOMATICA’14
trade fair in Munich on four subsequent days, once every
hour (see Figure 14). The entire setup was dismounted after
every demonstration. Both the movable and fixed obstacles
were placed randomly before each run. The mission was ac-
complished successfully 23 out of 27 times (81%). Reasons
for failures were mapping errors and wireless communication
issues. In all these failure cases, our system reacted in a
fail-safe way: the robots stopped to move and the error was
reported to the operator.

VIII. CONCLUSION

In this paper, we demonstrated the autonomous collabora-
tion of an aerial and a ground robot in a mock-up disaster
scenario. We detailed the algorithm for mission planning for
the ground robot and evaluated it for both special and random
scenarios. The high success rate during a trade fair showed
the robustness of our system.

Fig. 14: Demonstration of our system at the AUTOMATICA
trade fair in Munich, Germany in June 2014.



Wireless communication is a major concern when dealing
with multiple robots. We tackled this by performing all
crucial computations onboard the robots. Thus, we only need
to communicate high-level commands and sparse informa-
tion, which do not require low-latency or high-bandwidth
communication links.

A. Future Work

In real-world scenarios, two main assumptions of this
paper are not valid: first, in our case, obstacles are marked
with tags. Second, we assume the world to be flat and,
therefore, plan missions only in 2D. We plan to overcome
these limitations by building a 3D map using the images from
the aerial robot, e.g., using our real-time dense reconstruction
algorithm (REMODE) [23]. The maps from the aerial robot
could also be combined with the ones from the ground
robot [24]. Since wheeled robots, such as the KUKA youBot
used here, are limited to flat surfaces, we aim at deploying
legged robots for such missions.

Other directions of research include covering larger ar-
eas using fixed-wing aerial robots, extending the setup to
multiple aerial and ground robots, computing and executing
mission plans already while the flying robot is mapping, and
adapting the mission plan when the environment changes
during execution.

REFERENCES

[1] R. Murphy, Disaster Robotics. The MIT Press, Cambridge, MA,
2014.

[2] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Ta-
dokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, and
S. Kawatsuma, “Emergency response to the nuclear accident at the
Fukushima Daiichi nuclear power plants using mobile rescue robots,”
J. of Field Robotics, vol. 30, no. 1, pp. 44–63, 2013.

[3] G.-J. Kruijff, V. Tretyakov, T. Linder, F. Pirri, M. Gianni, P. Papadakis,
M. Pizzoli, A. Sinha, E. Pianese, S. Corrao, F. Priori, S. Febrini, and
S. Angeletti, “Rescue robots at earthquake-hit Mirandola, Italy: A field
report,” in IEEE Intl. Symp. on Safety, Security, and Rescue Robotics
(SSRR), 2012.

[4] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Na-
gatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno,
E. Takeuchi, and S. Tadokoro, “Collaborative mapping of an
earthquake-damaged building via ground and aerial robots,” J. of Field
Robotics, vol. 29, no. 5, pp. 832–841, Sep. 2012.

[5] M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz, B. Grocholsky,
V. Kumar, C. J. Taylor, Y. Endo, R. C. Arkin, B. Jung, D. F.
Wolf, G. S. Sukhatme, and D. C. MacKenzie, “Adaptive teams of
autonomous aerial and ground robots for situational awareness,” J. of
Field Robotics, vol. 24, no. 11–12, pp. 991–1014, 2007.

[6] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini UAV,” J. of Field Robotics,
vol. 25, no. 1–2, pp. 89–110, 2008.

[7] M. Garzon, J. Valente, D. Zapata, and A. Barrientos, “An aerial-ground
robotic system for navigation and obstacle mapping in large outdoor
areas,” Sensors, vol. 13, no. 1, pp. 1247–1267, 2013.

[8] T. Perkins and R. R. Murphy, “Active and mediated opportunistic
cooperation between an unmanned aerial vehicle and an unmanned
ground vehicle,” in IEEE Intl. Symp. on Safety, Security, and Rescue
Robotics (SSRR), 2013.

[9] M. Langerwisch, T. Wittmann, S. Thamke, T. Remmersmann,
A. Tiderko, and B. Wagner, “Heterogeneous teams of unmanned
ground and aerial robots for reconnaissance and surveillance - a field
experiment,” in IEEE Intl. Symp. on Safety, Security, and Rescue
Robotics (SSRR), 2013.

[10] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Do-
herty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and
N. Tomatis, “The SHERPA project: Smart collaboration between
humans and ground-aerial robots for improving rescuing activities in
alpine environments,” in IEEE Intl. Symp. on Safety, Security, and
Rescue Robotics (SSRR), 2012.

[11] G. Wilfong, “Motion panning in the presence of movable obstacles,”
in Proc. ACM Symp. Computat. Geometry, 1988.

[12] P. Chen and Y. Hwang, “Practical path planning among movable
obstacles,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
1991.

[13] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” Intl. J. of Humanoid
Robotics, vol. 2, no. 4, pp. 479–504, 2005.

[14] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, “Planning
and executing navigation among movable obstacles,” IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2006.

[15] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, “PIXHAWK: A micro aerial vehicle design for au-
tonomous flight using onboard computer vision,” Autonomous Robots,
vol. 33, no. 1–2, pp. 21–39, 2012.

[16] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2014.

[17] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to MAV
navigation,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2013.

[18] R. Bischoff, U. Huggenberger, and E. Prassler, “KUKA youBot - a
mobile manipulator for research and education,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2011.

[19] B. Keiser, “Torque control of a KUKA youBot arm,” Master’s thesis,
University of Zurich, 2013.

[20] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2011.

[21] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, Dec. 2008.

[22] A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” in AAAI Conf. on Artificial Intelligence, 2007.

[23] M. Pizzoli, C. Forster, and D. Scaramuzza, “REMODE: Probabilistic,
monocular dense reconstruction in real time,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2014.

[24] C. Forster, M. Pizzoli, and D. Scaramuzza, “Air-ground localization
and map augmentation using monocular dense reconstruction,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2013.


