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This report provides additional derivations and implementation details to support the paper [4]. Therefore,
it should not be considered a self-contained document, but rather regarded as an appendix of [4], and cited as:

“C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, IMU preintegration on manifold for efficient
visual-inertial maximum-a-posteriori estimation, (supplementary material, GT-IRIM-CP&R-2015-001),
In Robotics: Science and Systems (RSS), 2015.”

Across this report, references in the form “(x)”, e.g., (11), recall equations from the main paper [4], while
references “(A.x)”, e.g., (A.1), refer to equations within this appendix.
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1 IMU Preintegration: Noise Propagation and Bias Updates

1.1 Iterative Noise Propagation

In this section we provide a complete derivation of the preintegrated measurements covariance 33;; (c¢f. Section V-
B in [4]), which is such that:

nG = [0¢);,v],0pL]T ~ N(0gx1,Xs). (A1)

We call niAj the preintegration noise vector.

Let us rewrite explicitly what the preintegration errors d¢,;, dv;;, dpi; are (c¢f. Egs. (28)-(29)-(30)):
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§¢z] Z AR‘k+1] anZdAt

ovij Z [~ AR, (8, —b7)" 66, AL + ARyem @At
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opij = [—QAR,»;C (a,—b%)" 6, AL? + iAlendeﬁ (A.2)
k=i

where the relations are valid up to the first order. Now, one way to derive the covariance of 77” is to substitute
the expression of d¢,; back into 5V” and 6p;;. The result of this would be a linear expression that relates n”

to the raw measurements noise nk ,nk , on which a (tedious) noise propagation can be carried out.
To avoid this long procedure, we prefer to write (A.2) in iterative form, and then to carry out noise propa-
gation on the resulting (simpler) expressions. In order to write n% in iterative form we first note that:
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where we simply took the last term (k = j — 1) out of the sum and conveniently rearranged the terms.
Repeating the same process for dv;;:

6vij =Y [~ARy (3 —b?)" 3¢, At + ARy mid At]

=Y [~ARi (ax—Db)" ¢ At + ARyemf  At] — ARi; 1 (8, 1—bf)" 6¢p;; 1 At + AR;;_1mj?, At

k
= 6vij—1 — ARyj_1 (8;_1—b})" 0¢p;; 1 At + ARy;_1n}¢ At (A.4)

Doing the same for dp;;, and noting that dp;; can be written as a function of dv;; (this can be easily seen
from the expression of dv;; in (A.2)):
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From (A.3), (A.4), and (A.5), it follows that that (A.2) can be written in iterative form:
i1 = DR 106y, + IEml At
SViks1 = 0Vik — ARy (8, —bf)" 5¢p, At + ARymf? At
1o 1
5pik+1 = 6pzk + 5VikAt - §ARLk (ak—bz )/\ 5¢1kAt2 + iARzkndetz (A6)

for k =1i,...,7, with initial conditions d¢,, = 0v;; = Ip;; = 0s.
Eq. (A.6) can be conveniently written in matrix form:

0@ 41 ARy 03x3  O3x3 0y, JrAt 03x3 gd
Viky1 | = —APﬁlk (a,—b?)" At I3x3  Os3x3 ovig |+ Osxz ARy Al [ n’jd } (A7)
OPikt1 —3 AR, (ay,— b:)N At? TgusAt  Tsys 0Pik Osx3 3AR;AL "
or more simply:
Nite1 = Anji + Bnfl (A8)

where n¢ = [nk n%d).
From the linear model (A.8) and given the covariance X, € R6%6 of the raw IMU measurements noise n¢,
it’s now possible to compute the covariance iteratively:

S =A% AT +BX, BT (A.9)

starting from initial conditions 3;; = Ogxg.

Note that the fact that the covariance can be computed iteratively is convenient, computationally, as it
means that we can easily update the covariance after integrating a new measurement.

The same iterative computation is possible for the preintegrated measurements themselves:

ARip+1 = AR Exp (@i — bY) At)
AvVigr1 = Avy + Aﬁik(ékfb?) At
1. -
APirs1 = APir + AV At + §ARik(5k—b?) At? (A.10)

which easily follows from Egs. (28)-(29)-(30) of the main document.

1.2 Bias Correction via First-Order Updates

In this section we provide a complete derivation of the first-order bias correction Eroposed in Section V-C
of [4]. Let us start by recalling the expression of the preintegrated measurements AR;;, Av;;, Ap;;, given in
Egs. (28)-(29)-(30) of the main document:
j—1
AR;; = [] Exp ((@r — bY) At)
k=i

AVij =Y ARy (a5 —bf) At

j-1
3. =
AP;j = Y =ARy (ax—bY) At? All
Pij ; 5 ARi (2, —bf) (A11)
Assume now that we have computed the preintegrated variables at a given bias estimate b; = [bY b%], and let

us denote the corresponding preintegrated measurements as AR;j(b;), Av;;(b;), Ap;;(b;). In this section we

want to devise an expression to “update” AR;;(b;), Av”( i), Api;(b;) when our bias estimate changes.
Consider the case in which we get a new estimate b; « b; + 6b;, where db; is a small correction w.r.t. the

previous estimate b;. Using the new bias estimate b; in (A.11) we get the updated preintegrated measurements:

Ri; (b) H Exp ( (@ - BY) At) = ﬁExp (@) — Y — 6b?) At)
k=i
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. Jj— 1 j—1 3 ) B
Apy;(by) Z ARy, (ak—ba) AF = 37 SARi(bi) (&, — b — dbf) Ar (A.12)
k=1 k=1



A naive solution would be to recompute the preintegrated measurements at the new bias estimate as pre-
scribed in (A.12). In this section, instead, we show how to update the preintegrated measurements without
repeating the integration.

Let us start from the preintegrated rotation measurement AR,J( i)- We assumed that the bias correction is
small, hence we use the first-order approximation (7) for each term in the product:

Rij(b;) ~ 1:[ {Exp @y, — bf) At) Exp (—Jf sbd* At)}

where we defined J¥ = J,.(&, — b?) (J, is the right Jacobian for SO(3) given in Eq.(8) of the paper). We
rearrange the terms in the product, by “moving” the terms including éb to the end, using the relation (11):

AR;;(b;)=AR;;(b H Exp ( —ARyt1;(b;) I8 6b? At)] (A.13)

where we used the fact that AR;;(b;) = ch;i [Exp ((d)k — Bf) At)} by definition.
Repeated application of the first-order approximation (9) (recall that éb? is small, hence the right Jacobians
are close to the identity) produces:

AR;;(b;)~ ARy (b;)Exp (Z[ ARg415(by)TIF AL 5bg> AR;;(b )Exp<3§?ﬁ5bg) (A.14)
k=i

which corresponds to eq. (36) in [4]. The Jacobian aaAli'j can be precomputed during preintegration. This can

be done in analogy with Section 1.1 since the structure of 2 abq is essentially the same as the one multiplying the
noise in (A.2). Using (A.14) we can update the previous preintegrated measurement AR;;(b;) to get AR;;(b).
Let us now focus on the preintegrated velocity Av;;(b;). We substitute AR;;(b;) back into (A.12):

Avw Z AR;;(b j(b;)Exp ( 86ARZ]

ob¢) (& — b — oby) At (A.15)

Recalling that the correction db? is small, we use the first-order approximation (4):

. _ OAR; o
Av;;(by) ZAR” bs) ( ( abga(sbg) >(ak—bi — 5b%) At (A.16)

Developing the previous expression and dropping higher-order terms:

j—1 J—1 7j—1
. o . " OAR;; =
AV (by) ~ }IH; ARy;j(b;) (a — bY) At + }k ; AR;;(b;) (—0b2) At + }k ; ARy (by) (S o 5bg) (a — bY) At
(A.17)
Recalling that Av;;(b;) = Z{C: AR;;(b;) (ar — b}) At and using property (2):
= DAR,
< (T a = AA 2
Av;;(b;) = Av,i(b;) + E —AR;;(b;)AtSb? + 1; —AR;;(b;) (& — bY) 5o LAt 6b?
_ ~ — 8Av” a 8A\7ij g
= A (b)) + L 8bi + b (A.18)

which corresponds to the second expression in Eq. (36) of the paper.



Finally, repeating the same derivation for Af)ij(f)i)
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which corresponds to the last expression in Eq.(36).
To summarize, the Jacobians used for a-posteriori bias update are (cf. egs. (A.14)-(A.18)-(A.19)):

OAR; = §
Y 2 [ARki1(by)T J7 At]
AV, A~ s o
e ——;AR”(bl)At
8A\_7ij _ j71 ~ ~ “a AN 6ARU
AP 13

o ONANT. (. 2
ot = ;2AR”(bZ)At

j—1

OADij  x=3 .= o cayn OAR; o
The = D 5 AR (Bi) (&, —b) " A (A.20)

Repeating the same derivation of Section 1.1, it is possible to show that (A.20) can be computed incrementally,
as new measurements arrive.

2 IMU Factors: Residual Errors and Jacobians

In this section we provide analytic expressions for the Jacobian matrices of the residual errors introduced in
Section V-D of [4]. We start from the expression of the residual errors for the preintegrated IMU measurements

(c.f., Eq. (37)):

- aA Z] g T T
rar,; = Log AR;;(bY)Exp Ibe ob R;R;

—g - OAV;; OAV;;
I'Av,; = R,;r (Vj —V; — gAtij) - |:A‘~’ZJ (bi], b?) + Vi ob9 + Vi 5ba:|

0bd Ob®
. 1 . g OAD; JAD;
T 2 a 2 2 a
rapy; = R} (pj — Pi — vildty; — §gAtij) - {Apij(b&bi) 6b9j ob? + b, 25b ] (A.21)
“Lifting” the cost function consists in substituting the following retraction:
Pi < Pi + Riépi, R; < R; Exp(écl)i), pP; — | o F] + Rjépj, Rj “— R.j EXp(6¢j), (A.22)

while, since velocity and biases already live in a vector space the corresponding retraction reduces to:
Vi Vi+O6vi, Vi vi+6vi,  0bf < bl +dby,  db¢ < SbY + dby,, (A.23)

The process of lifting makes the residual errors a function defined on a vector space, on which it is easy to
compute Jacobians. We derive the Jacobians w.r.t. the vectors 5¢Z—,5pi,5vi,5¢j,5pj,5vj,5bgl,§bal in the
following sections.



2.1 Jacobians of rap,;

OAD;; OAD;,;
(5bg J a
oY b obi (A.24)
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In summary, the jacobians of rap,, are:
ora i A
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In summary, the jacobians of ray,; are:
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In summary, the jacobians of rag,; are:
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3 Vision factors: Schur Complement and Null Space Projection

Let us start from the linearized vision factors, given in Eq. (44) of the main document:

Z > IFudTi + Eadpr — byl (A.34)

I=14ieX(l)

where 6T; = [0¢; 0p;]T € R® is a perturbation w.r.t. the linearization point of the pose at keyframe i and ép;
is a perturbation w.r.t. the linerization point of landmark . The vector b;; € R? is the residual error at the
linearization point. For brevity, we do not enter in the details of the Jacobians F;; € R?*6 E;; € R2*3,

Now, as done in the main document, we denote with 6Ty € RS the vector stacking the perturbations
0T, for each of the n; cameras observing landmark /. With this notation (A.34) can be written in matrix

L
Z |Fy 0T xq) + Ei 0p0 — by|? (A.35)
=1
where:
O2x6 ... O2xe6
: . b
F, = 02x6  Fy : € R2mX6ni E, = E; c R2Zux3 b, = il c R2™
026
O2xg ... Oy
(A.36)

Since a landmark [ appears in a single term of the sum (A.35), for any given choice of the pose perturbation
6T x (1), the landmark perturbation dp; that minimizes the quadratic cost |[F; 6Ty + E; 6p; — by||? is:

op = —(E;El)_lE?—(Fl 6TX(l) — bl) (A37)

Substituting (A.37) back into (A.35) we can eliminate the landmarks from the optimization problem:
L
Z |(I - E(E[E)'E]) (F; 6Txg) — br) |12 (A.38)

which corresponds to eq. (46) of the main document. The structureless factors (A.38) only involve poses and
allow to perform the optimization disregarding landmark positions.

Computation can be further improved by the following linear algebra considerations. First, we note that
Q = (I-E/(E[E)'E]) € R?™*2" is an orthogonal projector of E;. Roughly speaking, Q projects any vector
in R2™ to the null space of the matrix E;. Moreover, any basis Ef‘ € R2mx2m=3 of the null space of E; satisfies
the following relation [5]:

—1 _
Ef (EN)'E) (E)" =I-E/(E/E)'Ef (A.39)



A basis for the null space can be easily computed from E; using SVD. Such basis is unitary, i.e., satisfies
E)TE; = 1. Substituting (A.39) into (A.38), and recalling that Ei- is a unitary matrix, we obtain:
i i i

M=

L
|E(ES)T (F 6Ty — by) Z Ef(EN)" (F 6T — bl))T (B (BT (F1 6T xq) — b))

I
-

.
(F1 6Txqy —b1) B (EN)TE; (BT (Fi 6Txqy — by)

M-

Il
-

N
(F1 6Txq) — b)) EF(ESNT (F 6T xg) —by) T(Fi 6Txq) —by) |I? (A.40)

-
I\Mh

Il
-

which is an alternative representation of our vision factors (A.38), and is usually preferable from a computational
standpoint. A similar null space projection is used in [6] within a Kalman filter architecture, while a factor
graph view on Schur complement is given in [2].

4 Angular Velocity and Right Jacobians for SO(3)

The right Jacobian matrix J,.(¢) (also called body Jacobian [7]) relates rates of change in the parameter vector
¢ to the instantaneous body angular velocity pwwsg:

sWwe = Jr(®) ¢ (A.41)
A closed-form expression of the right Jacobian is given in [3]:

el 2 T e

Note that the Jacobian becomes the identity matrix for ¢ = 0.

Consider a direct cosine matrix Ryi(¢) € SO(3), that rotates a point from body coordinates B to world
coordinates W, and that is parametrized by the rotation vector ¢. The relation between angular velocity and
the derivative of a rotation matrix is [7]

3(¢)=1- ). (A.42)

Rus Rws = n@iyp- (A.43)
Hence, using (A.41) we can write the derivative of a rotation matrix at ¢:

Rws(®) = Rwn(9) (3-(¢) ¢)". (A.44)

Given a multiplicative perturbation Exp(d1) on the right hand side of an element of the group SO(3), we
may ask what is the equivalent additive perturbation in the tangent space d¢ € so(3) that results in the same
compound rotation:

Exp(¢)Exp(34) = Exp(6h + 66b). (A.45)

Computing the derivative with respect to the increments on both sides, using (A.44), and assuming that the
increments are small, we find

o = 3 (¢)dg, (A.46)
leading to:

Exp(¢ + 6¢) = Exp(¢p) Exp(J,()d®). (A.47)
A similar first-order approximation holds for the logarithm:

Log( Exp(¢) Exp(d¢) ) ~ ¢ + 3. (¢)0. (A.48)

This property follows directly from the Baker—Campbell-Hausdorff (BCH) formula under the assumption that
d¢p is small [1]. An explicit expression for the inverse of the right Jacobian is given in [3]:

L 1reos(gl) ) oo
e 2||¢||sin<||¢>|>> (@)

J:1(¢)=I+;¢A+(
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