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Abstract—Research in Simultaneous Localization and Map-
ping (SLAM) has made outstanding progress over the past years.
SLAM systems are nowadays transitioning from academic to
real world applications. However, this transition has posed new
demanding challenges in terms of accuracy and robustness. To de-
velop new SLAM systems that can address these challenges, new
datasets containing cutting-edge hardware and realistic scenarios
are required. We propose the Hilti SLAM Challenge Dataset.
Our dataset contains indoor sequences of offices, labs, and
construction environments and outdoor sequences of construction
sites and parking areas. All these sequences are characterized
by featureless areas and varying illumination conditions that
are typical in real-world scenarios and pose great challenges
to SLAM algorithms that have been developed in confined lab
environments. Accurate sparse ground truth, at millimeter level,
is provided for each sequence. The sensor platform used to record
the data includes a number of visual, lidar, and inertial sensors,
which are spatially and temporally calibrated. The purpose of this
dataset is to foster the research in sensor fusion to develop SLAM
algorithms that can be deployed in tasks where high accuracy
and robustness are required, e.g., in construction environments.
Many academic and industrial groups tested their SLAM systems
on the proposed dataset in the Hilti SLAM Challenge. The results
of the challenge, which are summarized in this paper, show that
the proposed dataset is an important asset in the development
of new SLAM algorithms that are ready to be deployed in the
real-world.

Index Terms—SLAM, Mapping, Localization, Sensor Fusion.

SUPPLEMENTARY MATERIAL

The dataset as well as information regarding the Hilti SLAM
Challenge is available at https://www.hilti-challenge.com. The
results of the Hilti SLAM Challenge were also presented in
a talk: https://www.youtube.com/watch?v=3oqTGrnSkrY&t=
685s

I. INTRODUCTION

RECENT years have seen outstanding progresses in
SLAM [1]. The transition from demonstrative to real-

world applications is happening at this moment. A promising
application of SLAM for autonomous robotics is in con-
struction sites. Construction robotics offers a way to remove
hazards for workers, improve task productivity, and collect
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Fig. 1. Left: The full sensor stick resting on a tripod. Right: (1) ADIS16445
IMU (2) AlphaSense 5-camera module (3) Ouster OS0-64 LiDAR (4) Livox
MID70 LiDAR (5) prism for the Total Station.

high-quality data [2]. However, these environments bring many
challenges to SLAM systems. Featureless scenes, varying
illumination conditions, and sudden motions are among the
main challenges.

The deployment of SLAM algorithms to real-world applica-
tions has shed light on the limitations of the current systems.
These limitations are being addressed by academic research
often in collaboration with industrial partners [3]. We believe
that collaborations between academia and industry have the
potential to accelerate the process of developing new SLAM
systems that are able to meet tight requirements in terms of
accuracy and robustness.

An important role in this phase is played by the availability
of datasets containing relevant scenarios and sensors. The
scenarios should portray actual real-world applications where
SLAM systems are deployed. As the robotic community has
shown in several works [4]–[6], the highest accuracy and
robustness is achieved by fusing multiple and complementary
sensors. For this reason, SLAM datasets should contain mul-
tiple sensor modalities.

Many SLAM datasets have been proposed over the past
years [7]–[18], each of them has specific contributions on
the availability of multiple sensors and the type of scenarios
and motions. Most of the datasets [7], [9], [12]–[17] focus on
visual and inertial data, while only a few [8], [10], [11] also

https://www.hilti-challenge.com
https://www.youtube.com/watch?v=3oqTGrnSkrY&t=685s
https://www.youtube.com/watch?v=3oqTGrnSkrY&t=685s
http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch
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(a) Basement (b) Campus (c) Construction Site (d) IC Office

(e) Lab (f) Office Mitte (g) Parking (h) RPG Tracking Area

Fig. 2. Locations where the dataset have been captured.

provide LiDAR data. Depending on the type of environment
and motion, each dataset poses different challenges to SLAM.
Visual and inertial data recorded onboard an unmanned aerial
vehicle (UAV) in [7], [17] bring difficulties to visual-inertial
odometry (VIO) and SLAM systems because of fast motions.
Varying illumination conditions and moving objects are the
main challenges of datasets recorded in autonomous driving
scenarios [8], [9], [19]. Sudden motions and low texture,
as well as dynamic illumination conditions, are the main
challenges of datasets recorded with a handheld sensor plat-
form [10]–[12], [14], [15].

We propose the Hilti SLAM Challenge Dataset. The purpose
of this dataset is to foster the research in sensor fusion to
develop SLAM algorithms that can be deployed in tasks where
high accuracy, at millimeter level, and robustness are required,
e.g., in construction environments. Our dataset contains indoor
sequences of construction sites, offices, and labs and outdoor
sequences of construction environments and parking areas (in
Fig. 2). All these sequences are characterized by featureless
areas and varying illumination conditions that are typical of
real-world scenarios and pose challenges to SLAM algorithms
that have been developed in confined lab environments. Mil-
limeter accurate ground truth by mean of a motion capture
system (MoCap) or a Total Station [20], is provided for each
sequence. To record the data, we have created a suite of sensors
including a number of visual, LiDAR, and inertial sensors,
using the latest products in commercially available sensing
technologies with particular attention made to time synchro-
nization and spatial calibration. With the use of redundant
sensors, this dataset also directly compares sensor performance
in different environments, which can be informative for the de-
sign of SLAM systems. With this dataset, we aim to stimulate
research on robust indoor positioning, mapping, and navigation
with the particular application to construction environments.

This dataset was used in the Hilti SLAM Challenge, where
many academic and industrial groups submitted their SLAM

systems. The results of the challenge, which are summarized in
Section V, show that the proposed dataset can be an important
asset in the development of new SLAM algorithms that are
ready to be deployed in the real-world.

To summarize, the main contributions of the Hilti SLAM
Challenge Dataset are:

• Real-world sequences recorded in indoor offices and
labs, indoor and outdoor construction environments, and
outdoor parking areas containing challenging featureless
areas and varying illumination conditions.

• Sensor suite containing 5 cameras (1 stereo pair), 2
lidars, and 3 IMUs with accurate spatial and temporal
calibration.

• The Hilti SLAM Challenge. Many academic and industrial
groups used this dataset to further develop their SLAM
systems and take part in the Hilti SLAM Challenge
competition.

II. RELATED WORK

Among the plethora of datasets proposed to benchmark
SLAM, as well as VIO, systems, [7]–[18] are the ones that
mostly relate to the Hilti SLAM Challenge Dataset. Many
datasets [7], [9], [12]–[17] focus on visual and inertial data.
The datasets [7], [17] provide hardware-synchronized visual,
from a stereo camera, and inertial data recorded on board
an UAV. They challenge SLAM algorithms because of fast
motions, with [17] containing the most aggressive maneuvers.
For both datasets, the ground truth is generated by solving a
bundle adjustment problem including visual, inertial, and laser
tracker data. In [7], some sequences provide ground truth data
for a MoCap system. The datasets [12], [14], [15] provide
visual and inertial data recorded using a handheld sensor
platform. In all these datasets, the sensor platform includes a
stereo camera and an IMU. In addition, stereo RGB cameras
are also available in [12], [15]. The ground truth in [12] is
obtained by localizing to fiducial markers, which are placed
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TABLE I
COMPARISON OF SLAM DATASETS

Dataset Num. seq, Environment Motion Sensors Synchronization Ground truth

EuRoC [7] 11 Indoor UAV 1 Stereo camera
1 IMU Hw Laser tracker,

MoCap

KITTI [8] 22 Outdoor Car

1 Stereo camera
1 Stereo RGB camera

1 Lidar
1 IMU

Sw GNSS-INS

Malaga [9] 15 Outdoor Car 1 Stereo RGB camera
1 IMU Sw GPS

The Newer
College Dataset [11] 3 In- / Outdoor Handheld

4 Cameras
1 Lidars
2 Imus

Hw / Sw 3D imaging laser
scanner, ICP

PennCOSYVIO [12] 4 In- / Outdoor Handheld

4 RGB cameras
1 Stereo camera

1 Fisheye camera
2 IMUs

Hw / Sw Fiducial
markers

TartanAir [13] 30 In- / Outdoor Simulation Synthetic
1 stereo RGB camera Sim. Simulation

TUM VIO [14] 28 In- / Outdoor Handheld 1 Stereo camera
1 IMU Hw MoCap

(start, end)

UMA VI [15] 32 In- / Outdoor Handheld
1 Stereo RGB camera

1 Stereo camera
1 IMU

Hw Pose alignment
(start, end)

UMich [16] 27 In- / Outdoor UGV 6 RGB cameras
1 IMU Sw Fusion of GPS,

IMU, laser

UZH-FPV [17] 28 In- / Outdoor UAV
1 Stereo camera
1 Event camera

2 IMUs
Hw / Sw Fusion of vision,

IMU, laser

The Hilti SLAM
Challenge Dataset (Ours) 12 In- / Outdoor Handheld

5 Cameras
2 Lidars
3 Imus

Hw / Sw MoCap,
Total Station

along the trajectory. The ground truth at the start and end of
the trajectory is obtained by pose alignment with respect to
fiducial markers and using a MoCap system in [15] and [14],
respectively. In [13], it was proposed a large (30 sequences)
simulated dataset containing a broad range of scenarios. The
dataset in [18] includes data from an event camera, a survey on
event vision is presented in [21], as well as a standard camera
and IMU. It was designed to incentivize researchers to inves-
tigate the use of event cameras in SLAM. The datasets [8],
[9], [16] contain data recorded in autonomous driving, and
ground robot navigation, scenarios. They all include RGB
cameras and an IMU. The dataset [8] is one of the most
used datasets for benchmarking SLAM systems in autonomous
driving. It also includes LiDAR data. The ground truth for
these datasets is provided by inertial navigation systems (INS)
aided by global navigation satellite systems (GNSS). The
dataset proposed in [11], which is an extension of [10], is
the closest to our dataset. It contains sequences recorded in
a university campus. The sensor platform includes 4 cameras,
1 LiDAR, and 2 IMUs. The ground truth is provided by an
iterative closest point [22] (ICP) algorithm that registers the
LiDAR point cloud to a prior map. Differently from [11],
our dataset provides millimeter accurate ground truth from the
Hilti PLT 300 1 automated Total Station or a MoCap system.
In fact, the focus of our dataset is to advance the state-of-
the-art in SLAM in terms of accuracy with the final target of

1https://www.hilti.com/c/CLS MEA TOOL INSERT 7127/CLS
CONSTRUCTION TOTAL STATIONS 7127/r4728599

developing systems that are able to achieve millimeter level
accuracy as required in construction environments.

III. HARDWARE

Our sensor suite (the ’Phasma’ stick, Fig. 1) consists of
3 categories of sensing modalities operating with different
ranges and noise levels. These include:

A. Passive Visual

Alphasense by Sevensense2

The visual data is collected from an array of rigidly
mounted 1.3 MP global shutter cameras. This module
consists of 5 wide field-of-view cameras mounted to give
an approximate 270 deg continuous field of view. Within
this configuration, a stereo pair is present. Images are
synchronously collected at 10 Hz. While the Alphasense
can capture at a higher frame rate, doing so would have
required using a lower resolution. Since this dataset aims
for maximum accuracy, the higher resolution was chosen.

B. Active Optical

Ouster OS0-643

Long-range point cloud data is collected by the 360
deg scanning LiDAR sensor. This unit has a scan
repetition of 10 Hz, and a point data rate of 1,300,000

2https://www.sevensense.ai/product/alphasense-position
3https://ouster.com/products/os0-lidar-sensor/

https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_STATIONS_7127/r4728599
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_STATIONS_7127/r4728599
https://www.sevensense.ai/product/alphasense-position
https://ouster.com/products/os0-lidar-sensor/
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Fig. 3. Verification of the time synchronization between the LiDAR and the
camera module. The gyroscope data show a difference of <1ms.

points/second. Ranges are recorded from 0.3 to 50 m,
with typical lowest noise returns greater than 1 m. Range
accuracy is 1.5-5 cm.

Livox MID704

This unit is a LiDAR sensor with a 70 deg circular field
of view and a non-repeating scan pattern. Point data rate
is 100,000 points/second. Ranges are recorded from 0.02
to 200 m, with typical returns between 1 and 50 m. Range
accuracy is 2-5 cm.

C. Inertial Sensors

Analog Devices ADIS164455

This IMU is rigidly mounted to the AlphaSense module.
It is a high-performing MEMS based sensor with
relatively low noise and sensor bias drift rates. The data
from this IMU is tightly timestamped to the AlphaSense
timing system. Data is collected at 800 Hz.

Bosch BMI0856

This IMU is embedded in the AlphaSense module. It
provides a modest level of performance in terms of noise
and bias stability. The data from this IMU is tightly
timestamped to the AlphaSense timing system. Data is
collected at 200 Hz.

InvenSense ICM-209487

This IMU is embedded in the Ouster LiDAR. It provides
a more modest level of performance than the ADIS16445
in terms of noise and bias stability. The data from this
IMU is tightly timestamped to the Ouster timing system.
Data is collected at 100 Hz.

4https://www.livoxtech.com/mid-70
5https://www.analog.com/en/products/adis16445.html
6https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi085/
7https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948

D. Ground Truth System

For testing and validation, 2 systems are used to capture the
ground truth:

Total Station
A survey grade prism is attached to the Phasma stick,
tracked by the Hilti PLT 300 automated Total Station.
Ground truth data is collected in a ”stop ’n go” fashion,
where the total station precisely measures the prism
during the ’stop’ periods. The stick is gravity aligned,
using a mechanical system, before collecting each ground
truth measurement. The total station range and angle
measurements are processed to generate XYZ position
information. In this situation, the range measurements of
the static prism have accuracy of 3 mm.
Optical Tracking
Optical tracking targets are attached to the Phasma stick.
When operated in a motion capture space, the multiple
targets allow for the direct computation of the 6-DOF
pose. Those ground truth data-points have a position
accuracy of <1mm and are collected at 200 Hz.

E. DATA SYNCHRONIZATION AND LOGGING

In a dynamic multi-sensor system, time synchronization
between sensors is critical to make the best use of sensors
fusion. Special care was given to synchronization of the
Phasma stick to ensure maximum performance:

AlphaSense, Bosch IMU and ADIS IMU
The AlphaSense manages time synchronization at the
hardware level via an FPGA implementation. Camera
times are computed to the mid-exposure pulse (MEP).
Imu data is time tagged on arrival to the FPGA data bus.
Overall time synchronization between the cameras and
IMUs is <1 ms.

Ouster LiDAR and Invensense IMU
The Ouster module includes an integrated IMU. The
Ouster point data and IMU are hardware synchronized to
the Ouster internal clock. Time synchronization between
the two sensors is <1ms.

Cross Module Synchronization
Synchronization between modules (AlphaSense, Ouster,
Livox) is provided by the supported PTP network
time protocol [23]. Each module is attached via wired
Ethernet cable to the data logging device, which hosts the
PTP master clock. With this setup, the time alignment
between the modules is observed to be <1 ms, as shown
in Fig. 3. For verification, we adopted the approach from
[24] and used optimization tools over the correlation
signal of gyroscope data.

Data logging occurs on a dedicated computer connected to the
Phasma stick. The logging computer, with the Ubuntu 18.04
OS, runs the Robotic Operating System (ROS) during the data
capture. Sensing modules are connected to the data logger, and
data streams are directly recorded in ROS bag files.

https://www.livoxtech.com/mid-70
https://www.analog.com/en/products/adis16445.html
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi085/
https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948
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F. CALIBRATION

Accurate intrinsic and extrinsic sensors calibration is critical
to achieving the highest system performance. Each respective
manufacturer conducted intrinsic sensor calibration. We re-
run the intrinsic calibration of the cameras using a standard
checkerboard calibration. For LiDARs, proprietary calibration
models were used and corrections applied to the data at the
time of capture.
The reference point of the body frame of the Phasma stick is
defined at the AlphaSense Bosch IMU center. All other sensors
are transformed back to this point. Extrinsic calibrations were
determined from the CAD model of the Phasma design. The
calibration procedure proposed in [25] was used to refine the
cameras-IMUs extrinsic calibrations. Calibration files, CAD
Models, and sensor noise parameters are provided on the
dataset website.

IV. DATASET

Fig. 4. Example from the dataset ’Lab Survey 2’: images from the 5 cameras
and the Ouster OS0 point cloud

Data was collected under various conditions in indoor,
outdoor, and mixed indoor-outdoor environments. The data
shows practical challenges in different stages of constructions.
Challenges include variable lighting, limited features and/or
highly reflective and transparent surfaces.

Data descriptions (see Fig. 2):

(a) Basement
Data was collected in a windowless room (approx. 20x40
m). No natural light, mixed illumination brightness. Con-
crete space with building infrastructure. Basement 1 is a
short and easy path. In Basement 3 and Basement 4, we
mounted the sensor platform on a moving base instead
of operating it handheld. Basement 3 and 4 also allow to
exploit loop closure capabilities of the SLAM systems.

(b) Campus
Data was collected outdoors in a courtyard setting (ap-
prox. 40x60 m). Good natural lighting with high illumi-
nation. Mixed features with building structure and natural
flora.

(c) Construction Site
Mostly outdoors with some covered areas (approx. 40x80

m). Strong natural light with high illumination. Unfin-
ished natural surfaces with limited features above the
ground plane.

(d) IC Office
Indoor space with many windows and reflective surfaces
(approx. 10x70 m). Mix of natural and artificial light.
Strong illumination at the windows, modest illumination
indoors.

(e) Lab
Indoor space dominated by large windows (approx. 10x10
m). Strong natural light and reflective surfaces. Optitrack
6-DOF ground truth.

(f) Office Mitte
Indoor space in finished office building (approx. 30x50
m). Mix of natural and artificial light. Lots of building
structure.

(g) Parking
Mix of indoor and outdoor space (approx. 100x100 m).
Parking garage from the top floor to the bottom floor.
Lighting varies from extreme bright to modest darkness.
Ground plane structure on top floor and plenty of building
structure on the lower floor.

(h) RPG Tracking Area
Indoor test facility (approx. 30x30 m). Mostly artificial
light with some natural. Single large room with random
motion path throughout. MoCap 6-DOF ground truth.

A. Dataset Format
Datasets are stored in binary format (rosbags) which

contain images and IMU and LiDAR data. For the data
from the Livox a custom message was chosen as it con-
tains additional timing information compared to the stan-
dard ROS PointCloud2 message. Fig. 4 shows an exam-
ple of the camera and LiDAR data from the Lab Survey
2 dataset. Ground truth data is given in a separate file
for each dataset, with the filename indicating the reference
source (e.g. Construction_Site_prism.txt means
the ground truth is in the prism frame). All topics in the bag
are listed in Table II.

B. Challenges
This section includes an example of the challenges con-

tained in our dataset and highlights the need of multiple
sensors fusion. In the sequence Basement 4, the number feature
tracks by the LiDAR odometry algorithm, A-LOAM [27], re-
mains high (around 1000 per frame) while the Phasma device
is in the centre of the room, but it decreases significantly
when the device approaches a wall or a close overhang, see
in Fig. 5 left. In this case, the accuracy of the estimated
trajectory by A-LOAM is negatively affected. However, the
decrease of the LiDAR feature tracks can be compensated by
the increase of the visual features, see Fig. 5 right. In this
case, the best performance can be achieved by an algorithm
that fuses camera and LiDAR measurements.

V. THE HILTI SLAM CHALLENGE

The proposed dataset was used in the Hilti SLAM challenge,
which first edition took place at the 2021 IEEE/RSJ IROS



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

Basement	4

A-LOAM	Feature	Tracking

Corners
Surfels

#
	F
e
a
tu
re
s

200

400

600

800

1000

Time	(s)
0 100 200 300 400

(a)

(b)

Fig. 5. (a) Features tracked in ’Basement 4’ using the LiDAR-based SLAM algorithm A-LOAM. (b) the local environment during a low LiDAR feature event
(time approx. 336 s). Close walls and structures reduce the LiDAR measurements, whereas vision based algorithms can still operate normally (the feature
tracks of SVO2 [26] are shown).

TABLE II
MESSAGE TOPICS AND TYPES OF THE ROSBAGS

Topic Type Description
/alphasense/cam0/image_raw sensor_msgs/Image front facing camera 1 (right)
/alphasense/cam1/image_raw sensor_msgs/Image front facing camera 2 (left)
/alphasense/cam2/image_raw sensor_msgs/Image upward facing camera
/alphasense/cam3/image_raw sensor_msgs/Image right facing camera
/alphasense/cam4/image_raw sensor_msgs/Image left facing camera
/alphasense/imu sensor_msgs/Imu Bosch IMU, 200Hz
/alphasense/imu_adis sensor_msgs/Imu ADIS16445, 800Hz
/livox/lidar livox_ros_driver/CustomMsg Livox MID70
/os_cloud_node/imu sensor_msgs/Imu Ivensense, 100Hz
/os_cloud_node/points sensor_msgs/PointCloud2 Ouster OS0-64
tf_static tf2_msgs/TFMessage all transforms between frames

TABLE III
RESULTS OF THE HILTI SLAM CHALLENGE. THE REPORTS INCLUDING THE DESCRIPTION OF EACH SUBMISSION CAN BE FOUND ON THE DATASET

WEBSITE.

Team Method Description Sensors RMSE [m] Score
Megvii3D based on [28] IEFK based LiDAR + imu 0,0774 461
Bosch Research closed-source graph optimization, Manhattan world LiDAR + imu 0,0957 457
Vision & Robotics GmbH based on [29] tightly coupled MHE, loop closure, BA LiDAR + imu 0,1010 406
GeoSLAM closed-source sliding window, loop closure, BA LiDAR + imu 0,2602 389
Oxford Robotics Institute VILENS [30] tightly coupled, based on factor graphs camera + LiDAR + imu 0,1546 378
Nanyang Technological University VIRAL [31] sliding window, BA camera + LiDAR + imu 0,2024 346
CMU Doom closed-source sliding window + loop closure camera + LiDAR + imu 0,3592 333
ETH Zürich Maplab [32] tightly coupled, graph based camera + LiDAR + imu 0,7467 288
NPM3D Team, MINES ParisTech CT-ICP [33] scan-to-map, no loop closure, no ba LiDAR 3,6302 273
UC San Diego closed-source scan-to-map, imu for undistortion LiDAR + imu 0,0838 258
C.F Rubio et.al based on [34] optimization based LiDAR + imu 8,6470 228
IVISO closed-source graph based approach, no loop closing camera + imu 0,6135 219
Spectacular AI HybVIO [35] MSCKF [36] based, no global ba camera + imu 0,6758 216

conference. Academic and industrial groups submitted the
solutions of their SLAM algorithms on all the sequences of
the dataset. Participants had access to the ground truth of
half of the sequences. The other half was used for evaluation

(similarly to what is done in KITTI [8]). An accuracy-
dependent score was computed for ranking teams: after SO3
alignment [37] of the estimated trajectory with the ground
truth, every single point scored between 10 and 0 points: 10
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points for errors below 1 cm, 6 points between 1 cm and
10 cm and 3 points for errors up to 1 m. This format was
chosen, instead of computing the ranking based on the RMSE,
because in this way we could also consider non-complete or
missing trajectories, which would have distorted the ranking
otherwise. The choice of the thresholds was based our use-
case, which requires sub-cm accuracy. In total, 27 teams
participated in the challenge, with 7 commercial companies
among them, see Table III. The first four places have been
taken by commercial algorithms, which all focused on LiDAR-
IMU odometry, showing the maturity and robustness of these
approaches. The best team, Megvii, used a variant of FAST-
LIO2 [28] and achieved an average error of 9.3 cm on all
sequences. Megvii was one of the few teams that merged the
Ouster and the Livox LiDAR data, which, together with using
all LiDAR points for state estimation, gave them a significant
advantage. The best algorithm that fuses vision with LiDAR
and imu ranked 5th, VILENS [30] by the Oxford Robotics
Institute. The best vision-only solution ranked 12th, with the
majority of errors larger than 50 cm. The results show that,
unsurprisingly, commercial algorithms outperform academic
algorithms. The exact gap, however, was not clear prior to
this challenge. The results also show that there is still room for
improvement since the winning team did not fuse camera data.
Table III shows an overview of the teams and their approaches
(teams who decided to stay anonymously are not shown in the
table).

VI. KNOWN ISSUES

Despite careful design and execution of the data collec-
tion experiments, we are aware of some issues which pose
additional challenges for SLAM algorithms and limit the
achievable. These include:

• Clock drift and offset: The clock from MoCap and the
data logging computer are not hardware-synchronized.
We used Ethernet connection and a time-of-arrival time
stamping to keep the offset to a minimum, however we
observed a difference of around 1-3ms in the two clocks.

• Some frames in the LiDAR, camera and IMU data were
dropped due to high load on the controller.

VII. CONCLUSION

In this paper, we described a new public dataset captured
with a redundant multi-sensor platform containing visual,
inertial, and LiDAR data. The dataset includes a series of
real-world scenarios collected with state-of-the-art sensing
technologies and high-quality time-synchronization. Our goal
is to foster research in SLAM to advance the current state-
of-the-art and make SLAM systems ready to be deployed in
real-world applications with demanding requirements in terms
of accuracy and robustness, such as in construction robotics.
The dataset was used in the Hilti SLAM Challenge. The results
of the challenge show a picture of the capabilities of the
current SLAM algorithms, from both academia and industry,
and potential improvements, such as multi-sensors fusion.
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[19] J. Janai, F. Güney, A. Behl, A. Geiger, et al., “Computer
vision for autonomous vehicles: Problems, datasets and
state of the art,” Foundations and Trends® in Computer
Graphics and Vision, vol. 12, no. 1–3, pp. 1–308, 2020.

[20] C. Klug, C. Arth, D. Schmalstieg, and T. Gloor, “Mea-
surement uncertainty analysis of a robotic total station
simulation,” in IECON 2018 - 44th Annual Confer-
ence of the IEEE Industrial Electronics Society, 2018,
pp. 2576–2582.

[21] G. Gallego, T. Delbrück, G. Orchard, et al., “Event-
based vision: A survey,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 44, no. 1,
pp. 154–180, 2020.

[22] P. J. Besl and N. D. McKay, “Method for registration of
3-d shapes,” in Sensor fusion IV: control paradigms and
data structures, Spie, vol. 1611, 1992, pp. 586–606.

[23] “IEEE standard for a precision clock synchronization
protocol for networked measurement and control sys-
tems,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-
2002), pp. 1–269, 2008.

[24] M. Faizullin, A. Kornilova, A. Akhmetyanov, and G.
Ferrer, “Twist-n-sync: Software clock synchronization
with microseconds accuracy using MEMS-gyroscopes,”
Sensors, vol. 21, no. 1, 2021, ISSN: 1424-8220.

[25] P. Furgale, J. Rehder, and R. Siegwart, “Unified tem-
poral and spatial calibration for multi-sensor systems,”
2013. DOI: 10.1109/IROS.2013.6696514.

[26] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and
D. Scaramuzza, “SVO: Semidirect visual odometry for
monocular and multicamera systems,” IEEE Transac-
tions on Robotics, vol. 33, no. 2, pp. 249–265, 2017.

[27] J. Zhang and S. Singh, “LOAM: Lidar odometry and
mapping in real-time,” Robotics: Science and Systems
Conference (RSS), pp. 109–111, Jan. 2014.

[28] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-
LIO2: fast direct lidar-inertial odometry,” IEEE Trans-
actions on Robotics, vol. abs/2107.06829, 2022.

[29] F. Neuhaus, T. Koß, R. Kohnen, and D. Paulus,
“Mc2slam: Real-time inertial lidar odometry using two-
scan motion compensation,” in GCPR, 2018.

[30] D. Wisth, M. Camurri, and M. Fallon, Vilens: Visual,
inertial, lidar, and leg odometry for all-terrain legged
robots, 2021. arXiv: 2107.07243 [cs.RO].

[31] T.-M. Nguyen, S. Yuan, M. Cao, T. H. Nguyen, and
L. Xie, Viral slam: Tightly coupled camera-imu-uwb-
lidar slam, 2021. arXiv: 2105.03296 [cs.RO].

[32] T. Schneider, M. Dymczyk, M. Fehr, et al., “Maplab:
An open framework for research in visual-inertial map-
ping and localization,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1418–1425, Jul. 2018.

[33] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F.
Goulette, Ct-icp: Real-time elastic lidar odometry with
loop closure, 2021. arXiv: 2109.12979 [cs.RO].

[34] J. Zhang and S. Singh, “Loam : Lidar odometry and
mapping in real-time,” Robotics: Science and Systems
Conference (RSS), pp. 109–111, Jan. 2014.

[35] O. Seiskari, P. Rantalankila, J. Kannala, J. Ylilammi,
E. Rahtu, and A. Solin, “Hybvio: Pushing the limits
of real-time visual-inertial odometry,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2022, pp. 701–710.

[36] A. I. Mourikis and S. I. Roumeliotis, “A multi-state con-
straint kalman filter for vision-aided inertial navigation,”
in Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007, pp. 3565–3572.

[37] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative
trajectory evaluation for visual(-inertial) odometry,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 7244–7251.

https://doi.org/10.1109/IROS.2013.6696514
https://arxiv.org/abs/2107.07243
https://arxiv.org/abs/2105.03296
https://arxiv.org/abs/2109.12979

	Introduction
	Related Work
	Hardware
	Passive Visual
	Active Optical 
	Inertial Sensors
	Ground Truth System
	DATA SYNCHRONIZATION AND LOGGING
	CALIBRATION

	Dataset
	Dataset Format
	Challenges

	The Hilti SLAM Challenge
	Known Issues
	Conclusion
	Acknowledgments 

