
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020 1

A General Framework
for Uncertainty Estimation in Deep Learning

Antonio Loquercio*1, Mattia Segu*1, and Davide Scaramuzza1

Abstract—Neural networks predictions are unreliable when the
input sample is out of the training distribution or corrupted by
noise. Being able to detect such failures automatically is funda-
mental to integrate deep learning algorithms into robotics. Cur-
rent approaches for uncertainty estimation of neural networks
require changes to the network and optimization process, typi-
cally ignore prior knowledge about the data, and tend to make
over-simplifying assumptions which underestimate uncertainty.
To address these limitations, we propose a novel framework for
uncertainty estimation. Based on Bayesian belief networks and
Monte-Carlo sampling, our framework not only fully models the
different sources of prediction uncertainty, but also incorporates
prior data information, e.g. sensor noise. We show theoretically
that this gives us the ability to capture uncertainty better
than existing methods. In addition, our framework has several
desirable properties: (i) it is agnostic to the network architecture
and task; (ii) it does not require changes in the optimization
process; (iii) it can be applied to already trained architectures. We
thoroughly validate the proposed framework through extensive
experiments on both computer vision and control tasks, where
we outperform previous methods by up to 23% in accuracy.

Index Terms—Deep Learning in Robotics and Automation,
Probability and Statistical Methods, AI-Based Methods.

SUPPLEMENTARY MATERIAL

The video available at https://youtu.be/X7n-bRS5vSM
shows qualitative results of our experiments. The project’s
code is available at: https://tinyurl.com/v3jb64k

I. INTRODUCTION

ROBOTS act in an uncertain world. In order to plan and
make decisions, autonomous systems can only rely on

noisy perceptions and approximated models. Wrong decisions
not only result in the failure of the mission but might even
put human lives at risk, e.g., if the robot is an autonomous car
(Fig. I). Under these conditions, deep learning algorithms can
be fully integrated into robotic systems only if a measure of
prediction uncertainty is available. Indeed, estimating uncer-
tainties enables Bayesian sensor fusion and provides valuable
information during decision making [1].

Manuscript received: September, 10th, 2019; Revised November, 4th, 2019;
Accepted January, 14th, 2020.

This paper was recommended for publication by Editor Tamim Asfour upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the Swiss National Center of Competence Research Robotics
(NCCR), through the Swiss National Science Foundation, and the SNSF-ERC
starting grant.

1All authors are with the Dep. of Informatics and Neuroinformatics of the
University of Zurich and ETH Zurich, Switzerland.

Digital Object Identifier (DOI): see top of this page.
*These two authors contributed equally. Order is alphabetical.

𝜎2

ො𝑦

𝜎2

ො𝑦

Fig. 1. A neural network trained for steering angle prediction can be
fully functional on a clean image (left) but generate unreliable predictions
when processing a corrupted input (right). In this work, we propose a
general framework to associate each network prediction with an uncertainty
(illustrated above in red) that allows to detect such failure cases automatically.

Prediction uncertainty in deep neural networks generally
derives from two sources: data uncertainty and model uncer-
tainty. The former arises because of noise in the data, usually
caused by the sensors’ imperfections. The latter instead is
generated from unbalances in the training data distribution. For
example, a rare sample should have higher model uncertainty
than a sample which appears more often in the training data.
Both components of uncertainty play an important role in
robotic applications. A sensor can indeed never be assumed
to be noise free, and training datasets cannot be expected to
cover all the possible edge-cases.

Traditional approaches for uncertainty estimation model the
network activations and weights by parametric probability
distributions. However, these approaches are particularly dif-
ficult to train [2] and are rarely used in robotic applications.
Another family of approaches estimate uncertainties through
sampling [3]. Since they do not explicitly model data uncer-
tainty, these methods generate over-confident predictions [4].
In addition, methods based on sampling generally disregard
any relationship between data and model uncertainty, which
increases the risk of underestimating uncertainties. Indeed,
an input sample with large noise should have larger model
uncertainty than the same sample with lower noise.

In this paper, we propose a novel framework for uncertainty
estimation of deep neural network predictions. By combin-
ing Bayesian belief networks [5], [6], [7] with Monte-Carlo
sampling, our framework captures prediction uncertainties
better than state-of-the-art methodologies. In order to do so,
we propose two main innovations with respect to previous
works: the use of prior information about the data, e.g.,
sensor noise, to compute data uncertainty, and the modelling
of the relationship between data and model uncertainty. We
demonstrate both theoretically and experimentally that these
two innovations allow our framework to produce higher quality

https://youtu.be/X7n-bRS5vSM
https://tinyurl.com/v3jb64k

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

uncertainty estimates than state-of-the-art methods. In addi-
tion, our framework has some desirable properties: (i) it is
agnosticto the neural network architecture and task; (ii) it does
not require any change in the optimization or learning process,
and (iii) it can be applied to analready trainedneural network.
These properties make our approach an appealing solution to
learning-based perception or control algorithms, enabling them
to be better integrated into robotic systems.

To show the generality of our framework, we perform
experiments on four challenging tasks: end-to-end steering
angle prediction, obstacle future motion prediction, object
recognition, and closed-loop control of a quadrotor. In these
tasks, we outperform existing methodologies for uncertainty
estimation by up to 23% in term of prediction accuracy.
However, our framework is not limited to these problems and
can be applied, without any change, to a wide range of tasks.
Overall, our work makes the following contributions:

� We propose a general framework to compute uncertainties
of neural networks predictions. Our framework is general
in that it is agnostic to the network architecture, does not
require changes in the learning or optimization process,
and can be applied to already trained neural networks.

� We show mathematically that our framework can capture
data and model uncertainty and use prior information
about the data.

� We experimentally show that our approach outperforms
existing methods for uncertainty estimation on a diverse
set of tasks.

II. RELATED WORK

In the following, we discuss the methods that have been
proposed to estimate uncertainties and a series of approaches
which have used this information in robotic systems.

A. Estimating Uncertainties in Neural Networks Predictions

A neural network is generally composed of a large num-
ber of parameters and non-linear activation functions, which
makes the (multi-modal) posterior distribution of a network
predictions intractable. To approximate the posterior, exist-
ing methods deploy different techniques, mainly based on
Bayesian inference and Monte-Carlo sampling.

To recover probabilistic predictions, Bayesian approaches
represent neural networks weights through parametric distribu-
tions, e.g., exponential-family [8], [5], [2], [9]. Consequently,
networks' predictions can also be represented by the same dis-
tributions, and can be analytically computed using non-linear
belief networks [5] or graphical models [10]. More recently,
Wang et al. [9] propose natural parameter networks, which
model inputs, parameters, nodes, and targets by Gaussian
distributions. Overall, these family of approaches can recover
uncertainties in a principled way. However, they generally
increase the number of trainable parameters in a super-linear
fashion, and require speci�c optimization techniques [2] which
limits their impact in real-world applications.

In order to decrease the computational burden, Gast et
al. [6] proposed to replace the network's input, activations,
and outputs by distributions, while keeping network's weights

deterministic. Similarly, probabilistic deep state space mod-
els retrieve data uncertainty in sequential data, and use it
for learning-based �ltering [11], [12]. However, disregarding
weights uncertainty generally results in over-con�dent pre-
dictions, in particular for inputs not well represented in the
training data.

Instead of representing neural networks parameters and
activations by probability distributions, a second class of meth-
ods proposed to use Monte-Carlo (MC) sampling to estimate
uncertainty. The MC samples are generally computed using an
ensemble of neural networks. The prediction ensemble could
either be generated by differently trained networks [13], [14],
[15], or by keeping drop-out at test-time [3]. While this class
of approaches can represent well the multi-modal posterior
by sampling, it cannot generally represent data uncertainty,
due for example to sensor noise. A possible solution is to
tune the dropout rates [16], however it is always possible
to construct examples where this approach would generate
erroneous predictions [4].

To model data uncertainty, Kendall et al. [17] proposed to
add to each output a “variance” variable, which is trained by
a maximum-likelihood (a.k.a. heteroscedastic) loss on data.
Combined with Monte-Carlo sampling, this approach can
predict both the model and data uncertainty. However, this
method requires to change the architecture, due to the variance
addition, and to use the heteroscedastic loss for training, which
is not always feasible.

Akin to many of the aforementioned methods, we use
Monte-Carlo samples to predict model uncertainty. Through
several experiments, we show why this type of uncertainty,
generally ignored or loosely modelled by Bayesian meth-
ods [6], cannot be disregarded. In addition to Monte-Carlo
sampling, our approach also computes the prediction un-
certainty due to the sensors noise by using gaussian belief
networks [5] and assumed density �ltering [7]. Therefore, our
approach can recover the full prediction uncertainty for any
given (and possible already trained) neural network, without
requiring any architectural or optimization change.

B. Uncertainty Estimation in Robotics

Given the paramount importance of safety, autonomous
driving research has allocated a lot of attention to the problem
of uncertainty estimation, from both the perception [18], [19]
and the control side [13], [14]. Feng. et al. [18] showed
an increase in performance and reliability of a 3D Lidar
vehicle detection system by adding uncertainty estimates to
the detection pipeline. Predicting uncertainty was also shown
to be fundamental to cope with sensor failures in autonomous
driving [13], and to speed-up the reinforcement learning
process on a real robot [14].

For the task of autonomous drone racing, Kaufmann et
al. [20] demonstrated the possibility to combine optimal
control methods to a network-based perception system by
using uncertainty estimation and �ltering. Also for the task
of robot manipulation, uncertainty estimation was shown to
play a fundamental role to increase the learning ef�ciency and
guarantee the manipulator safety [21], [22].

LOQUERCIOet al.: A GENERAL FRAMEWORK FOR UNCERTAINTY ESTIMATION 3

In order to fully integrate deep learning into robotics,
learning systems should reliably estimate the uncertainty in
their predictions [1]. Our framework represents a minimally
invasive solution to this problem: we do not require any
architectural changes or re-training of existing models.

III. M ETHODOLOGY

Due to the large number of (possibly non-linear) operations
required to generate predictions, the posterior distribution
p(y jx), wherey are output predictions andx input samples, is
intractable. Formally, we de�ne the total prediction uncertainty
as � tot = Varp(y jx) (y). This uncertainty comes from two
sources: data and model uncertainty. In order to estimate
� tot , we derive a tractable approximation ofp(y jx). In the
following, we present the derivation of this approximation
by using Bayesian inference, and the resulting algorithm to
predict � tot (illustrated in Fig. 2).

A. The data uncertainty

Sensors' observations, e.g. images, are generally corrupted by
noise. Therefore, what a neural network processes as input isz,
a noisy version of the “real” inputx. We assume that the sensor
has known noise characteristicv , which can be generally
acquired by system identi�cation or hardware speci�cations.
Given v , we assume the input data distributionq(zjx) to be:

q(zjx) � N (z; x; v) : (1)

The output uncertainty resulting from this noise is generally
de�ned asdata (or aleatoric) uncertainty.

In order to compute data uncertainty, we forward-propagate
sensor noise through the network via Assumed Density Fil-
tering (ADF) [7]. This approach, initially applied to neural
networks by Gast et al. [6], replaces each network activa-
tion, including input and output, by probability distributions.
Speci�cally, the joint density of all activations in a network
with l layers is:

p(z(0: l)) = p(z(0))
lY

i =1

p(z(i) jz(i � 1)) (2)

p(z(i) jz(i � 1)) = � [z(i) � f (i) (z(i � 1))] (3)

where� [�] is the Dirac delta andf (i) the i-th network layer.
Since this distribution is intractable, ADF approximates it
with:

p(z(0: l)) � q(z(0: l)) = q(z(0))
lY

i =1

q(z(i)) (4)

whereq(z) is normally distributed, with all components inde-
pendent:

q(z(i)) � N
�

z(i) ; ��� (i) ; v (i)
�

=
Y

j

N
�

z(i)
j ; ��� (i)

j ; v (i)
j

�
: (5)

The activationz(i � 1) is then processed by the (possibly non-
linear) i-th layer function,f (i) , which transforms it into the
(not necessarily normal) distribution:

p̂(z(0: i)) = p(z(i) jz(i � 1))q(z(0: i � 1)): (6)

The goal of ADF is then to �nd the distributionq(z(0: i))
which better approximateŝp(z(0: i)) under some measure, e.g.
Kullback-Leibler divergence:

q(z(0: i)) = arg min
q̂(z (0: i))

KL(q̂(z(0: i)) k p̂(z(0: i))) (7)

Minka et al. [23] showed that the solution to (7) requires
matching the moments of the two distributions. Under the
normality assumptions, this is equivalent to:

��� (i) = Eq(z (i � 1)) [f (i) (z(i � 1))] (8)

v (i) = Vq(z (i � 1)) [f (i) (z(i � 1))] (9)

where E and V are the �rst and second moment of the
distribution. The solution of Eq. (8) and Eq. (9) can be
computed analytically for the majority of functions used in
neural networks, e.g. convolution, de-convolutions, relu, etc,
and has an approximated solution for max-pooling. This results
in a recursive formula to compute the activations mean and
uncertainty,(��� (i) ; v (i)), given the parameters of the previous
activations distributionq(z(i � 1)). We refer the reader to [6],
[5], [24] for the details of the propagation formulas.

In summary, ADF modi�es the forward pass of a neural
network to generate not only output predictions��� (l) , but also
their respective data uncertaintiesv (l) . In order to do so, ADF
propagates the input uncertaintyv = v (0) , which, in a robotics
scenario, corresponds to the sensor noise characteristics.

B. The model uncertainty

Model (or epistemic) uncertainty refers to the con�dence
a model has about its prediction. Similarly to Bayesian ap-
proaches [25], [26], [27], [28], [3], we represent this un-
certainty by placing a distribution over the neural network
weights,! . This distribution depends on the training dataset
D = f X ; Y g, whereX ; Y are training samples and labels,
respectively. Therefore, the weight distribution after training
can be written asp(! jX ; Y).

Except in trivial cases,p(! jX ; Y) is intractable. In order to
approximate this distribution, Monte-Carlo based approaches
collect weights samples by using dropout at test time [28], [3],
[17]. Formally, this entails to approximate:

p(! jX ; Y) � q(! ; �) = Bern (! ; �) (10)

where� are the Bernoulli (or dropout) rates on the weights.
Under this assumption, the model uncertainty is the variance
of T Monte-Carlo samples, i.e. [3]:

Varmodel
p(y jx) (y) = � model =

1
T

TX

t =1

(y t � �y)2 (11)

where f y t gT
t =1 is a set ofT sampled outputs for weights

instances! t � q(! ; �) and �y = 1=T
P

t y t .
Eq. 11 has an intuitive explanation: Due to over-

parametrization, a network develops redundant representations
of samples frequently observed in the training data. Because
of the redundancy, predictions for those samples will remain
approximately constant when a part of the network is switched
off with dropout. Consequently, these samples will receive

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

Fig. 2. Given an input samplex , associated with noisev (0) , and a trained neural network, our framework computes the con�dence associated to the network
output. In order to do so, it �rst transforms the given network into a Bayesian belief network. Then, it uses an ensemble ofT such networks, created by
enabling dropout at test time, to generate the �nal prediction��� and uncertainty� tot .

a low model uncertainty. In contrast, for rare samples the
network is not able to generate such redundancies. Therefore,
it will associate them with high model uncertainty.

C. Model uncertainty of an already trained network

The optimal dropout rates� needed to compute� model

are the minimizers of the distance between the real and the
hypothesis weight distribution:

� = arg min
�̂

KL(p(! jX ; Y) k q(! ; �̂)) : (12)

Previous works showed that the best� corresponds to the
training dropout rates [28], [3], [17]. This, however, hinders
the computation of model uncertainty for networks trained
without dropout.

Since re-training a given network with a speci�c rate� is
not always possible for several applications, we propose to
�nd the best� after training by minimizing the negative log-
likelihood between predicted and ground-truth labels. This is
justi�ed by the following lemma:

Lemma III.1. The dropout rates� minimizing Eq.(12), under
normality assumption on the output, are equivalent to:

� = arg min
�̂

X

d2 D

1
2

log(� d
tot)+

1
2� d

tot
(y d

gt � y d
pred (^�)) 2: (13)

Proof. A successfully trained networkpnet (y jx ; !) can very
well predict the ground-truth,i.e.:

pgt (y jx) � ppred (y jx) =
Z

!
pnet (y jx ; !)p(! jX ; Y): (14)

By approximatingp(! jX ; Y) by q(! j�) , i.e., putting dropout
only at test time, the real predicted distribution is actually:

p̂pred (y jx ; �) =
Z

!
pnet (y jx ; !)q(! j�) : (15)

Sincepnet (�) in Eq. (14) and Eq. (15) are the same, minimizing
KL(pgt (y jx) k p̂pred (y jx ; �)) is equivalent to minimizing
Eq. (12). Assuming that bothpnet and pgt are normal, and
that � gt ! 0 (i.e. ground-truth is quasi-deterministic), the
distance between the predicted and ground-truth distribution
is equivalent to Eq. (13).

Practically, � is found by grid-search on a log-range of 20
possible rates in the range[0; 1].

D. The total uncertainty

Section III-A shows that ADF can be used to propagate
sensor uncertainties to the network outputs. This is equivalent
to model the output distributionp(y jx) � p(y jz; !)p(zjx),
where! are deterministic network parameters andp(zjx) the
sensor noise characteristics. Instead, Section III-B shows that
model uncertainty can be computed by putting a distribution
on the network weightsp(! jX ; Y). The total uncertainty� tot

results from the combination of the model and data uncertainty.
It can be computed through a stochastic version of ADF, as
presented in the following lemma.

Lemma III.2. The total variance of a network outputy for
an input samplex corrupted by noisev (0) is:

� tot = Varp(y jx) (y) =
1
T

TX

t =1

v (l)
t + (��� (l)

t � ����)2 (16)

where f ��� (l)
t ; v (l)

t gT
t =1 is a set ofT outputs from the ADF

network with weights! t � q(! ; �) and ���� = 1=T
P

t ��� l
t .

Its proof can be found in the supplementary material. Intu-
itively, Eq. (16) generates the total uncertainty by summing
the two components of data and model uncertainty. Note
the difference between Eq. (11) and our model uncertainty,
1=T

P T
t =1 (��� (l)

t � ����)2. Differently from Eq. (11), the prediction
ensemble used to calculate the model variance is not generated
with network outputsy t , but with ADF predictions��� (l)

t .
Consequently, the model uncertainty also depends on the input
sensor noisev (0) . Indeed, this is a very intuitive result: even
though a sample has been frequently observed in the training
data, it should have large model uncertainty if corrupted by
high noise. From Lemma III.2 we derive a computationally
feasible algorithm to compute, at the same time, predictions
and total uncertainties. Illustrated in Fig. 2, the algorithm
is composed of three main steps: (i) transforming a neural
network into its ADF version (which does not require re-
training), (ii) collect T samples by forwarding(x; v (0)) to
the network with ! t � q(! ; �) and (iii) compute output
predictions and variances according to lemma III.2.

It is interesting to draw a connection between Eq. (16) and
the total uncertainty formulas used by previous works. Gast
et al. [3], for example, do not use ADF networks to collect

	Introduction
	Related Work
	Estimating Uncertainties in Neural Networks Predictions
	Uncertainty Estimation in Robotics

	Methodology
	The data uncertainty
	The model uncertainty
	Model uncertainty of an already trained network
	The total uncertainty

	Experiments
	Demonstrators
	Practical Considerations

	Conclusion
	References
	Supplementary Material
	Proof of Lemma III.2

	Training Details
	Implementation
	End-to-End Steering Angle Prediction
	Object Future Motion Prediction
	Model Error Compensation

	Sensitivity to Sensor Noise Estimates

