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DroNet: Learning to Fly by Driving
Antonio Loquercio∗, Ana I. Maqueda †, Carlos R. del-Blanco †, and Davide Scaramuzza∗

Abstract—Civilian drones are soon expected to be used in a
wide variety of tasks, such as aerial surveillance, delivery, or
monitoring of existing architectures. Nevertheless, their deploy-
ment in urban environments has so far been limited. Indeed,
in unstructured and highly dynamic scenarios, drones face
numerous challenges to navigate autonomously in a feasible and
safe way. In contrast to traditional “map-localize-plan” methods,
this paper explores a data-driven approach to cope with the
above challenges. To accomplish this, we propose DroNet: a
convolutional neural network that can safely drive a drone
through the streets of a city. Designed as a fast 8-layers residual
network, DroNet produces two outputs for each single input
image: a steering angle to keep the drone navigating while
avoiding obstacles, and a collision probability to let the UAV
recognize dangerous situations and promptly react to them. The
challenge is however to collect enough data in an unstructured
outdoor environment such as a city. Clearly, having an expert
pilot providing training trajectories is not an option given the
large amount of data required and, above all, the risk that it
involves for other vehicles or pedestrians moving in the streets.
Therefore, we propose to train a UAV from data collected by
cars and bicycles, which, already integrated into the urban
environment, would not endanger other vehicles and pedestrians.
Although trained on city streets from the viewpoint of urban
vehicles, the navigation policy learned by DroNet is highly
generalizable. Indeed, it allows a UAV to successfully fly at
relative high altitudes and even in indoor environments, such
as parking lots and corridors. To share our findings with the
robotics community, we publicly release all our datasets, code,
and trained networks.

Index Terms—Learning from Demonstration, Deep Learning
in Robotics and Automation, Aerial Systems: Perception and
Autonomy

SUPPLEMENTARY MATERIAL

For supplementary video see:https://youtu.be/ow7aw9H4BcA.

The project’s code, datasets and trained models are available at:

http://rpg.ifi.uzh.ch/dronet.html.

I. INTRODUCTION

S
AFE and reliable outdoor navigation of autonomous sys-

tems, e.g. unmanned aerial vehicles (UAVs), is a chal-

lenging open problem in robotics. Being able to successfully

navigate while avoiding obstacles is indeed crucial to un-

lock many robotics applications, e.g. surveillance, construction

monitoring, delivery, and emergency response [1], [2], [3]. A
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Fig. 1: DroNet is a convolutional neural network, whose

purpose is to reliably drive an autonomous drone through

the streets of a city. Trained with data collected by cars and

bicycles, our system learns from them to follow basic traffic

rules, e.g, do not go off the road, and to safely avoid other

pedestrians or obstacles. Surprisingly, the policy learned by

DroNet is highly generalizable, and even allows to fly a drone

in indoor corridors and parking lots.

robotic system facing the above tasks should simultaneously

solve many challenges in perception, control, and localization.

These become particularly difficult when working in urban

areas, as the one illustrated in Fig. 1. In those cases, the

autonomous agent is not only expected to navigate while

avoiding collisions, but also to safely interact with other agents

present in the environment, such as pedestrians or cars.

The traditional approach to tackle this problem is a two step

interleaved process consisting of (i) automatic localization in

a given map (using GPS, visual and/or range sensors), and

(ii) computation of control commands to allow the agent to

avoid obstacles while achieving its goal [1], [4]. Even though

advanced SLAM algorithms enable localization under a wide

range of conditions [5], visual aliasing, dynamic scenes, and

strong appearance changes can drive the perception system

to unrecoverable errors. Moreover, keeping the perception

and control blocks separated not only hinders any possibility

of positive feedback between them, but also introduces the

challenging problem of inferring control commands from 3D

maps.

Recently, new approaches based on deep learning have of-

fered a way to tightly couple perception and control, achieving

impressive results in a large set of tasks [6], [7], [8]. Among

them, methods based on reinforcement learning (RL) suffer

from significantly high sample complexity, hindering their

application to UAVs operating in safety-critical environments.

In contrast, supervised-learning methods offer a more viable

https://youtu.be/ow7aw9H4BcA
http://rpg.ifi.uzh.ch/dronet.html
http://rpg.ifi.uzh.ch
http://gti.ssr.upm.es


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

way to learn effective flying policies [6], [9], [10], but they

still leave the issue of collecting enough expert trajectories to

imitate. Additionally, as pointed out by [10], collision trajec-

tories avoided by expert human pilots are actually necessary

to let the robotic platform learn how to behave in dangerous

situations.

Contributions

Clearly, a UAV successfully navigating through the streets

should be able to follow the roadway as well as promptly

react to dangerous situations exactly as any other ground

vehicle would do. Therefore, we herein propose to use data

collected from ground vehicles which are already integrated

in environments as aforementioned. Overall, this work makes

the following contributions:

• We propose a residual convolutional architecture which,

by predicting the steering angle and the collision proba-

bility, can perform a safe flight of a quadrotor in urban

environments. To train it, we employ an outdoor dataset

recorded from cars and bicycles.

• We collect a custom dataset of outdoor collision se-

quences to let a UAV predict potentially dangerous situ-

ations.

• Trading off performance for processing time, we show

that our design represents a good fit for navigation-related

tasks. Indeed, it enables real-time processing of the video

stream recorded by a UAV’s camera.

• Through an extensive evaluation, we show that our system

can be applied to new application spaces without any

initial knowledge about them. Indeed, with neither a

map of the environment nor retraining or fine-tuning,

our method generalizes to scenarios completely unseen

at training time including indoor corridors, parking lots,

and high altitudes.

Even though our system achieves remarkable results, we do

not aim to replace traditional “map-localize-plan” approaches

for drone navigation, but rather investigate whether a similar

task could be done with a single shallow neural network.

Indeed, we believe that learning-based and traditional ap-

proaches will one day complement each other.

II. RELATED WORK

A wide variety of techniques for drone navigation and

obstacle avoidance can be found in the literature. At high level,

these methods differ depending on the kind of sensory input

and processing employed to control the flying platform.

A UAV operating outdoor is usually provided with GPS,

range, and visual sensors to estimate the system state, infer

the presence of obstacles, and perform path planning [1],

[4]. Nevertheless, such works are still prone to fail in urban

environments where the presence of high rise buildings, and

dynamic obstacles can result in significant undetected errors

in the system state estimate. The prevalent approach in such

scenarios is SLAM, where the robot simultaneously builds a

map of the environment and self-localizes in it [5]. On the

other hand, while an explicit 3D reconstruction of the envi-

ronment can be good for global localization and navigation, it

is not entirely clear how to infer control commands for a safe

and reliable flight from it.

Recently, there has been an increasing research effort in

directly learning control policies from raw sensory data using

Deep Neural Networks. These methodologies can be divided

into two main categories: (i) methods based on reinforcement

learning (RL) [7], [11] and (ii) methods based on supervised

learning [6], [12], [9], [10], [13].

While RL-based algorithms have been successful in learning

generalizing policies [7], [8], they usually require a large

amount of robot experience which is costly and dangerous to

acquire in real safety-critical systems. In contrast, supervised

learning offers a more viable way to train control policies, but

clearly depends upon the provided expert signal to imitate.

This supervision may come from a human expert [6], hard-

coded trajectories [10], or model predictive control [12].

However, when working in the streets of a city, it can be

both tedious and dangerous to collect a large set of expert

trajectories, or evaluate partially trained policies [6]. Addition-

ally, the domain-shift between expert and agent might hinder

generalization capabilities of supervised learning methods.

Indeed, previous work in [9], [13] trained a UAV from video

collected by a mountain hiker but did not show the learned

policy to generalize to scenarios unseen at training time.

Another promising approach has been use simulations to get

training data for reinforcement or imitation learning tasks,

while testing the learned policy in the real world [14], [15],

[11]. Clearly, this approach suffers from the domain shift

between simulation and reality and might require some real-

world data to be able to generalize [11]. To our knowledge,

current simulators still fail to model the large amount of

variability present in an urban scenario and are therefore not

fully acceptable for our task. Additionally, even though some

pioneering work has been done in [14], it is still not entirely

clear how to make policies learned in simulation generalize

into the real world.

To overcome the above-mentioned limitations, we propose

to train a neural network policy by imitating expert behaviour

which is generated from wheeled manned vehicles only. Even

though there is a significant body of literature on the task of

steering angle prediction for ground vehicles [16], [17], our

goal is not to propose yet another method for steering angle

prediction, but rather to prove that we can deploy this expertise

also on flying platforms. The result is a single shallow network

that processes all visual information concurrently, and directly

produces control commands for a flying drone. The coupling

between perception and control, learned end-to-end, provides

several advantages, such as a simpler and lightweight system

and high generalization abilities. Additionally, our data collec-

tion proposal does not require any state estimate or even an

expert drone pilot, while it exposes pedestrians, other vehicles,

and the drone itself to no danger.

III. METHODOLOGY

Our learning approach aims at reactively predicting a

steering angle and a probability of collision from the drone

on-board forward-looking camera. These are later converted
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into control flying commands which enable a UAV to safely

navigate while avoiding obstacles.

Since we aim to reduce the bare image processing time, we

advocate a single convolutional neural network (CNN) with

a relatively small size. The resulting network, which we call

DroNet, is shown in Fig. 2 (a). The architecture is partially

shared by the two tasks to reduce the network’s complexity and

processing time, but is then separated into two branches at the

very end. Steering prediction is a regression problem, while

collision prediction is addressed as a binary classification

problem. Due to their different nature and output range, we

propose to separate the network’s last fully-connected layer.

During the training procedure, we use only imagery

recorded by manned vehicles. Steering angles are learned from

images captured from a car, while probability of collision,

from a bicycle.

A. Learning Approach

The part of the network that is shared by the two tasks

consists of a ResNet-8 architecture followed by a dropout

of 0.5 and a ReLU non-linearity. The residual blocks of the

ResNet, proposed by He et al. [18], are shown in Fig. 2 (b).

Dotted lines represent skip connections defined as 1×1 convo-

lutional shortcuts to allow the input and output of the residual

blocks to be added. Even though an advantage of ResNets

is to tackle the vanishing/exploding gradient problems in very

deep networks, its success lies in its learning principle. Indeed,

the residual scheme has been primarily introduced to address

the degradation problem generated by difficulties in networks’

optimization [18]. Therefore, since residual architectures are

known to help generalization on both shallow and deep net-

works [18], we adapted this design choice to increase model

performance. After the last ReLU layer, tasks stop sharing

parameters, and the architecture splits into two different fully-

connected layers. The first one outputs the steering angle, and

the second one a collision probability. Strictly speaking the

latter is not a Bayesian probability but an index quantifying

the network uncertainty in prediction. Slightly abusing the

notation, we still refer to it as “probability”.

We use mean-squared error (MSE) and binary cross-entropy

(BCE) to train the steering and collision predictions, re-

spectively. Although the network architecture proves to be

appropriate to minimize complexity and processing time, a

naive joint optimization poses serious convergence problems

due to the very different gradients’ magnitudes that each loss

produces. More specifically, imposing no weighting between

the two losses during training results in convergence to a

very poor solution. This can be explained by difference of

gradients’ magnitudes in the classification and regression task

at the initial stages of training, which can be problematic for

optimization [19]. Indeed, the gradients from the regression

task are initially much larger, since the MSE gradients’ norms

is proportional to the absolute steering error. Therefore, we

give more and more weight to the classification loss in later

stages of training. Once losses’ magnitudes are comparable,

the optimizer will try to find a good solution for both at

the same time. For the aforementioned reasons, imposing no

or constant loss weight between the two losses would likely

result in sub-optimal performance or require much longer

optimization times. This can be seen as a particular form

of curriculum learning [19]. In detail, the weight coefficient

corresponding to BCE is defined in (1), while the one for

MSE is always 1. For our experiments, we set decay = 1
10

,

and epoch0 = 10.

Ltot = LMSE +max(0,1− exp−decay(epoch−epoch0))LBCE (1)

The Adam optimizer [20] is used with a starting learning

rate of 0.001 and an exponential per-step decay equal to 10−5.

We also employ hard negative mining for the optimization to

focus on those samples which are the most difficult to learn.

In particular, we select the k samples with the highest loss in

each epoch, and compute the total loss according to Eq. (1).

We define k so that it decreases over time.

B. Datasets

To learn steering angles from images, we use one of the

publicly available datasets from Udacity’s project [21]. This

dataset contains over 70,000 images of car driving distributed

over 6 experiments, 5 for training and 1 for testing. Every

experiment stores time-stamped images from 3 cameras (left,

central, right), IMU, GPS data, gear, brake, throttle, steering

angles and speed. For our experiment, we only use images

from the forward-looking camera (Fig. 3 (a)) and their asso-

ciated steering angles.

To our knowledge, there are no public datasets that associate

images with collision probability according to the distance to

the obstacles. Therefore, we collect our own collision data

by mounting a GoPro camera on the handlebars of a bicycle.

We drive along different areas of a city, trying to diversify

the types of obstacles (vehicles, pedestrians, vegetation, under-

construction sites) and the appearance of the environment (Fig.

3 (b)). This way, the drone is able to generalize under different

scenarios. We start recording when we are far away from an

obstacle and stop when we are very close to it. In total, we

collect around 32,000 images distributed over 137 sequences

for a diverse set of obstacles. We manually annotate the

sequences, so that frames far away from collision are labeled

as 0 (no collision), and frames very close to the obstacle are

labeled as 1 (collision), as can be seen in Fig. 3(b). Collision

frames are the types of data that cannot be easily obtained by

a drone but are necessary to build a safe and robust system.

C. Drone Control

The outputs of DroNet are used to command the UAV to

move on a plane with forward velocity vk and steering angle

θk. More specifically, we use the probability of collision pt

provided by the network to modulate the forward velocity:

the vehicle is commanded to go at maximal speed Vmax when

the probability of collision is null, and to stop whenever it is

close to 1. We use a low-pass filtered version of the modulated

forward velocity vk to provide the controller with smooth,

continuous inputs (0 ≤ α ≤ 1):

vk = (1−α)vk−1 +α(1− pt)Vmax, (2)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Fig. 2: (a) DroNet is a forked Convolutional Neural Network that predicts, from a single 200× 200 frame in gray-scale, a

steering angle and a collision probability. The shared part of the architecture consists of a ResNet-8 with 3 residual blocks (b),

followed by dropout and ReLU non-linearity. Afterwards, the network branches into 2 separated fully-connected layers, one

to carry out steering prediction, and the other one to infer collision probability. In the notation above, we indicate for each

convolution first the kernel’s size, then the number of filters, and eventually the stride if it is different from 1.

Fig. 3: (a) Udacity images used to learn steering angles. (b) Collected images to learn probability of collision. The green box

contains no-collision frames, and the red one collision frames.

Similarly, we map the predicted scaled steering sk into a

rotation around the body z-axis (yaw angle θ ), corresponding

to the axis orthogonal to the propellers’ plane. Concretely, we

convert sk from a [−1,1] range into a desired yaw angle θk in

the range [−π
2
,

π
2
] and low-pass filter it:

θk = (1−β )θk−1 +β
π

2
sk (3)

In all our experiments we set α = 0.7 and β = 0.5, while

Vmax was changed according to the testing environment. The

above constants have been selected empirically trading off

smoothness for reactiveness of the drone’s flight. As a result,

we obtain a reactive navigation policy that can reliably control

a drone from a single forward-looking camera. An interesting

aspect of our approach is that we can produce a collision

probability from a single image without any information about

the platform’s speed. Indeed, we conjecture the network to

make decision on the base of the distance to observed objects

in the field of view. Convolutional networks are in fact well

known to be successful on the task of monocular depth

estimation [15]. An interesting question that we would like

to answer in future work is how this approach compares to an

LSTM [22] based solution, making decisions over a temporal

horizon.

IV. EXPERIMENTAL RESULTS

In this section, we show quantitative and qualitative results

of our proposed methodology. First, we evaluate the accuracy

of DroNet with a set of performance metrics. Then, we discuss

its control capabilities comparing it against a set of navigation

baselines.

A. Hardware Specification

We performed our experiments on a Parrot Bebop 2.0 drone.

Designed as an outdoor hobby platform, it has a basic and

rather inaccurate, visual odometry system that allows the user

to provide only high-level commands, such as body-frame

velocities, to control the platform. Velocity commands are

produced by our network running on an Intel Core i7 2.6 GHz

CPU that receives images at 30 Hz from the drone through

Wi-Fi.

B. Regression and Classification Results

We first evaluate the regression performance of our model

employing the testing sequence from the Udacity dataset [21].

To quantify the performance on steering prediction, we use

two metrics: root-mean-squared error (RMSE) and explained
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Model EVA RMSE Avg. accuracy F-1 score Num. Layers Num. parameters Processing time [fps]

Random baseline -1.0 ± 0.022 0.3 ± 0.001 50.0±0.1% 0.3±0.01 - - -
Constant baseline 0 0.2129 75.6% 0.00 - - -

Giusti et al. [9] 0.672 0.125 91.2% 0.823 6 5.8×104 23

ResNet-50 [18] 0.795 0.097 96.6% 0.921 50 2.6×107 7

VGG-16 [23] 0.712 0.119 92.7% 0.847 16 7.5×106 12

DroNet (Ours) 0.737 0.109 95.4% 0.901 8 3.2×105 20

TABLE I: Quantitative results on regression and classification task: EVA and RMSE are computed on the steering regression task,
while Avg. accuracy and F-1 score are evaluated on the collision prediction task. Our model compares favorably against the considered
baselines. Despite being relatively lightweight in terms of number of parameters, DroNet maintains a very good performance on both tasks.
We additionally report the on-line processing time in frames per second (fps), achieved when receiving images at 30 Hz from the UAV.

(a) (b)

Fig. 4: Model performance: (a) Probability Density Function (PDF)
of actual vs. predicted steerings of the Udacity dataset testing se-
quence. (b) Confusion matrix on the collision classification evaluated
on testing images of the collected dataset. Numbers in this matrix
indicate the percentage of samples falling in each category.

variance ratio (EVA)1. To asses the performance on collision

prediction, we use average classification accuracy and the F-1

score2.

Table I compares DroNet against a set of other architectures

from the literature [18], [23], [9]. Additionally, we use as

weak baselines a constant estimator, which always predicts

0 as steering angle and “no collision”, and a random one.

From these results we can observe that our design, even

though 80 times smaller than the best architecture, maintains a

considerable prediction performance while achieving real-time

operation (20 frames per second). Furthermore, the positive

comparison against the VGG-16 architecture indicates the

advantages in terms of generalization due to the residual

learning scheme, as discussed in Section III-A. Our design

succeeds at finding a good trade-off between performance and

processing time as shown in Table I and Fig. 4. Indeed, in order

to enable a drone to promptly react to unexpected events or

dangerous situations, it is necessary to reduce the network’s

latency as much as possible.

C. Quantitative Results on DroNet’s Control Capabilities

We tested our DroNet system by autonomously navigating

in a number of different urban trails including straight paths

and sharp curves. Moreover, to test the generalization capa-

bilities of the learned policy, we also performed experiments

1Explained Variance is a metric used to quantify the quality of a regressor,

and is defined as EVA =
Var[ytrue−ypred ]

Var[ytrue ]
2F-1 score is a metric used to quantify the quality of a classifier. It is

defined as F-1= 2
precision×recall
precision+recall

in indoor environments. An illustration of the testing environ-

ments can be found in Fig. 5 and Fig. 6. We compare our

approach against two baselines:

(a) Straight line policy: trivial baseline consisting in follow-

ing a straight path in open-loop. This baseline is expected to

be very weak, given that we always tested in environments

with curves.

(b) Minimize probability of collision policy: strong base-

line consisting in going toward the direction minimizing the

collision probability. For this approach, we implemented the

algorithm proposed in [10], which was shown to have very

good control capabilities in indoor environments. We employ

the same architecture as in DroNet along with our collected

dataset in order to estimate the collision probability.

As metric we use the average distance travelling before

stopping or colliding. Results from Table II indicate that

DroNet is able to drive a UAV the longest on almost all the

selected testing scenarios. The main strengths of the policy

learned by DroNet are twofold: (i) the platform smoothly

follows the road lane while avoiding static obstacles; (ii) the

drone is never driven into a collision, even in presence of

dynamic obstacles, like pedestrians or bicycles, occasionally

occluding its path. Another interesting feature of our method

is that DroNet usually drives the vehicle to a random direction

in open spaces and at intersections. In contrast, the baseline

policy of minimizing the probability of collision was very of-

ten confused by intersections and open spaces, which resulted

in a shaky uncontrolled behaviour. This explains the usually

large gaps in performance between our selected methodology

and the considered baselines.

Interestingly, the policy learned by DroNet generalizes well

to scenarios visually different from the training ones, as shown

in Table II. First, we noticed only a very little drop in

performance when the vehicle was flying at relatively high

altitude (5 m). Even though the drone’s viewpoint was different

from a ground vehicle’s one (usually at 1.5 m), the curve

could be successfully completed as long as the path was in

the field of view of the camera. More surprisingly was the

generalization of our method to indoor environments such

as a corridor or a parking lot. In these scenarios, the drone

was still able to avoid static obstacles, follow paths, and stop

in case of dynamic obstacles occluding its way. Nonetheless,

we experienced some domain-shift problems. In indoor envi-

ronments, we experienced some drifts at intersections which

were sometimes too narrow to be smoothly performed by our

algorithm. In contrast, as we expected, the baseline policy
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(a) Outdoor 1 (b) Outdoor 2 (c) Outdoor 3

(d) Indoor Parking Lot (e) Indoor Corridor (f) Closer view of Outdoor 2

Fig. 5: Testing environments: (a) Outdoor 1 is a 90◦ curve with a dead end. This scenario is also tested with the drone flying

at high altitude (5 m), as shown in Fig. 6. (b) Outdoor 2 is a sharp 160◦ curve followed by a 30 m straight path. A closer view

of this environment can be seen in (f). (c) Outdoor 3 is a series of 2 curves, each of approximately 60◦, with straight paths in

between. Moreover, we also tested DroNet on scenarios visually different from the training ones, such as (d) an indoor parking

lot, and (e) an indoor corridor.

Urban Environment Generalization Environments
Policy Outdoor 1 Outdoor 2 Outdoor 3 High Altitude Outdoor 1 Corridor Garage

Straight 23 m 20 m 28 m 23 m 5 m 18 m
Gandhi et al. [10] 38 m 42 m 75 m 18 m 31 m 23 m
DroNet (Ours) 52 m 68 m 245 m 45 m 27 m 50 m

TABLE II: Average travelled distance before stopping: We show here navigation results using three different policies on a several
environments. Recall that [10] uses only collision probabilities, while DroNet uses also predicted steering angles, too. High Altitude Outdoor
1 consists of the same path as Outdoor 1, but flying at 5 m altitude, as shown in Fig. 6

of [10], specifically designed to work in narrow indoor spaces,

outperformed our method. Still, we believe that it is very

surprising that a UAV trained on outdoor streets can actually

perform well even in indoor corridors.

D. Qualitative Results

In Fig. 8 and, more extensively in the supplementary video,

it is possible to observe the behaviour of DroNet in some of

the considered testing environments. Unlike previous work [9],

our approach always produced a safe and smooth flight. In

particular, the drone always reacted promptly to dangerous

situations, e.g. sudden occlusions by bikers or pedestrians in

front of it.

To better understand our flying policy, we employed the

technique outlined in [24]. Fig. 7 shows which part of an

image is the most important for DroNet to generate a steering

decision. Intuitively, the network mainly concentrates on the

“line-like” patterns present in a frame, which roughly indicate

the steering direction. Indeed, the strong coupling between

perception and control renders perception mainly sensitive to

Fig. 6: High altitude Outdoor 1: In order to test the ability

of DroNet to generalize at high altitude, we made the drone

fly at 5 m altitude in the testing environment Outdoor 1.

Table II indicates that our policy is able to cope with the large

difference between the viewpoint of a camera mounted on a

car (1.5 m) and the one of the UAV.
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(a) (b) (c) (d)

Fig. 7: Activation maps: Spatial support regions for steering regression in city streets, on (a) a left curve and (b) a straight

path. Moreover we show activations on (c) an indoor parking lot, and (d) an indoor corridor. We can observe that the network

concentrates its attention to “line-like” patterns, which approximately indicate the steering direction.

Fig. 8: DroNet predictions: The above figures show predicted steering and probability of collision evaluated over several

experiments. Despite the diverse scenarios and obstacles types, DroNet predictions always follow common sense and enable

safe and reliable navigation.

the features important for control. This explains why DroNet

generalizes so well to many different indoor and outdoor

scenes that contain “line–like” features. Conversely, we expect

our approach to fail in environments missing those kind of

features. This was for example the case for an experiment

we performed in a forest, where no evident path was visible.

However, placed in a forest surrounding with a clearly visible

path, the drone behaved better.

Furthermore, the importance of our proposed methodology

is supported by the difficulties encountered while carrying out

outdoor city experiments. If we want a drone to learn to fly in

a city, it is crucial to take advantage of cars, bicycles or other

manned vehicles. As these are already integrated in the urban

streets, they allow to collect enough valid training data safely

and efficiently.

V. DISCUSSION

Our methodology comes with the advantages and limitations

inherent to both traditional and learning-based approaches. The

advantages are that, using our simple learning and control

scheme, we allow a drone to safely explore previously unseen

scenes while requiring no previous knowledge about them.

More specifically, in contrast to traditional approaches, there

is no need to be given a map of the environment, or build

it online, pre-define collision-free waypoints and localize

within this map. An advantage with respect to other CNN-

based controllers [13], [9], [12], [6], [11] is, that we can

leverage the large body of literature present on steering angle

estimation [16], [17] on both the data and the algorithmic point

of view. As shown in the experiments, this gives our method

high generalization capabilities. Indeed, the flying policy we

provide can reliably fly in non-trivial unseen scenarios without

requiring any re-training or fine-tuning, as it is generally

required by CNN-based approaches [11]. Additionally, the

very simple and optimized network architecture can make our

approach applicable to resource constrained platforms. The

limitations are primarily that the agile dynamics of drones

is not fully exploited, and that it is not directly possible

to explicitly give the robot a goal to be reached, as it is

common in other CNN-based controllers [13], [9], [25]. There

are several ways to cope with the aforementioned limitations.

To exploit the drone agility, one could generate 3D collision-
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free trajectories, as e.g. in [25], when high probability of

collision is predicted. To generalize to goal-driven tasks, one

could either provide the network with a rough estimate of

the distance to the goal [26], or, if a coarse 2D map of

the environment is available, exploit recent learning-based

approaches developed for ground robots [27]. Moreover, to

make our system more robust, one could produce a measure

of uncertainty, as in [28]. In such a way, the system could

switch to a safety mode whenever needed.

VI. CONCLUSION

In this paper, we proposed DroNet: a convolutional neural

network that can safely drive a drone in the streets of a city.

Since collecting data with a UAV in such an uncontrolled

environment is a laborious and dangerous task, our model

learns to navigate by imitating cars and bicycles, which already

follow the traffic rules. Designed to trade off performance for

processing time, DroNet simultaneously predicts the collision

probability and the desired steering angle, enabling a UAV to

promptly react to unforeseen events and obstacles. We showed

through extensive evaluations that a drone can learn to fly in

cities by imitating manned vehicles. Moreover, we demon-

strated interesting generalization abilities in a wide variety of

scenarios. Indeed, it could be complementary to traditional

“map-localize-plan” approaches in navigation-related tasks,

e.g. search and rescue, and aerial delivery. For this reason,

we release our code and datasets to share our findings with

the robotics community.
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