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Abstract—We study the problem of perceiving forest or moun-
tain trails from a single monocular image acquired from the view-
point of a robot traveling on the trail itself. Previous literature
focused on trail segmentation, and used low-level features such
as image saliency or appearance contrast; we propose a different
approach based on a Deep Neural Network used as a supervised
image classifier. By operating on the whole image at once, our
system outputs the main direction of the trail compared to the
viewing direction. Qualitative and quantitative results computed
on a large real-world dataset (which we provide for download)
show that our approach outperforms alternatives, and yields an
accuracy comparable to the accuracy of humans that are tested
on the same image classification task. Preliminary results on
using this information for quadrotor control in unseen trails are
reported. To the best of our knowledge, this is the first paper
that describes an approach to perceive forest trials which is
demonstrated on a quadrotor micro aerial vehicle.

Index Terms—Visual-Based Navigation; Aerial Robotics; Ma-
chine Learning; Deep Learning

VIDEOS AND DATASET

A narrated video summary of this paper, additional figures,
videos and the full training/testing datasets are available at
http://bit.ly/perceivingtrails.

I. INTRODUCTION

AUTONOMOUSLY following a man-made trail (such as
those normally traversed by hikers or mountain-bikers) is

a challenging and mostly unsolved task for robotics. Solving
such problem is important for many applications, including
wilderness mapping [1] and search and rescue; moreover, fol-
lowing a trail would be the most efficient and safest way for a
ground robot to travel medium and long distances in a forested
environment: by their own nature, trails avoid excessive slopes
and impassable ground (e.g. due to excessive vegetation or
wetlands). Many robot types, including wheeled, tracked and
legged vehicles [2], are capable of locomotion along real-
world trails. Moreover, Micro Aerial Vehicles (MAVs) flying
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Fig. 1: Our quadrotor acquires the trail images from a forward-
looking camera; a Deep Neural Network classifies the images to
determine which action will keep the robot on the trail.

under the tree canopy [3], [4] are a compelling and realistic
option made possible by recent technological advances (such
as collision-resilience [5]).

In order to successfully follow a forest trail, a robot has
to perceive where the trail is, then react in order to stay on
the trail. In this paper, we will describe a machine-learning
approach to the visual perception of forest trails and show
preliminary results on an autonomous quadrotor. We consider
as input a monocular image from a forward-looking camera.

Perceiving real-world trails in these conditions is an ex-
tremely difficult and interesting pattern recognition problem
(see Figure 2), which is often challenging even for humans
(e.g., losing a trail is a common experience among casual
hikers). Computer Vision and Robotics literature mainly fo-
cused on paved road [6], [7], [8], [9] and forest/desert road
perception [10].

The latter is a significantly more difficult problem than
the former, because unpaved roads are normally much less
structured than paved ones: their appearance is very variable
and often boundaries are not well defined. Compared to
roads, the perception of trails poses an even harder challenge,
because their surface appearance can change very frequently,
their shape and width is not as constrained, and they often
seamlessly blend with the surrounding area (e.g. grass).

Several previous works [11], [12] dealing with trail percep-
tion solved a segmentation problem, i.e., aimed at determining
which areas of the input image correspond to the image of the
trail. In order to solve this task, one needs to explicitly define
which visual features characterize a trail. Rasmussen et al.
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Fig. 2: Three images from our dataset. Given an image, we aim to determine the approximate direction the trail is heading with respect to
the viewing direction (respectively, left, right and straight ahead).

[11] relied on appearance contrast, whereas Santana et al.
adopted image conspicuity [12]; both features are conceptually
similar of image saliency [13]. For every pixel of an image,
saliency quantifies how much such pixel visually “stands out”
from the rest; for example, the pixels belonging to a small
colored object on an uniform background will be characterized
by an high saliency with respect to the saliency computed
for the background pixels. If we assume that the trail image
exhibits some sort of marked visual difference with respect to
its surroundings, then saliency will be high for trail pixels, and
low elsewhere. This information, which by itself is expected
to be very noisy, was aggregated [14] with a number of
simple (symmetric, triangular shape [11]) or complex (spatial-
temporal integration based on virtual ants [12]) geometry
priors in order to infer the trail position and direction in the im-
age, thus producing a rough segmentation of the trail. A similar
segmentation system using data from stereo omnidirectional
cameras and a laser rangefinder was also implemented [15] to
steer a wheeled robot along a trail.

In this paper, we follow a different approach and cast the
trail perception problem as an image classification task: we
estimate the approximate direction the trail with respect to the
direction of view by adopting a supervised machine learning
approach based on Deep Neural Networks (DNNs), a state-of-
the-art deep learning technique that operates directly on the
image’s raw pixel values (Section III-B). DNNs have recently
emerged as a powerful tool for various computer vision
tasks (e.g. object classification [16], [17], biomedical image
segmentation [18]), often outperforming other techniques. One
of the advantages of DNNs over common alternatives for
supervised image classification is generality: in fact, features
are learned directly from data, and do not have to be chosen or
designed by the algorithm developers for the specific problem
on which they are applied.

Machine learning techniques have been used for a long
time [19], [20] to map visual inputs to actions. When the
goal is obstacle avoidance, several works [21], [22], [23]
obtained good results with simple biologically-inspired con-
trollers based on optical flow features. More recently, deep
learning techniques have also been adopted by Sermanet, Had-
sell et al. [24], [25] for autonomous navigation of a robot in
various nonstructured environments; in these works, the terrain
visible in front of the robot is classified for traversability,
which provides high-level information for obstacle-free path
planning. Ross et al. [3] used imitation learning [26], [27] to
steer a quadrotor to avoid trees in an outdoor environment;

the controller is previously trained by manually piloting the
robot for a short time. In our case, the visual perception task
is harder (Fig. 2) since real-world trails have much more
appearance variability than trees at close range. This requires
a more powerful classifier to be trained with a significantly
larger training dataset, which would be impractical to acquire
by manually piloting a robot: therefore, we acquire the dataset
offline, by means of a simple but efficient expedient introduced
in Section III-A.

A. Contributions

Our main contributions are:
• a trail perception technique based on Deep Neural Net-

works (Section III-B) which bypasses the challenging
problem of determining the characteristic features of a
trail;

• a large dataset, provided for download, efficiently ac-
quired on real-world hiking trails (Section III-A), that
was used to train and test the Deep Neural Network;

• a quantitative comparison of our approach with state-
of-the-art methods and humans on an unseen testing set
(Section IV).

• The system implementation and demonstration (see video
attachment) on a quadrotor following a previously-unseen
trail.

II. PROBLEM FORMULATION

Consider a generic scene with a single trail in a wilderness
setting. Our input is an image acquired by a camera situated
above the trail. In the following, we assume the viewpoint
height is similar to the average height of a person (approx-
imately 1.7m), because it is high enough to provide a good
view over the surrounding ground, but still a realistic sensor
position for medium-sized all-terrain ground robots; moreover,
we can expect that this height is mostly free of obstacles on
trails in forested areas, and as such, a reasonable choice for
MAVs.

Let ~v be the direction of the camera’s optical axis; we
assume that ~v lies on the horizontal plane. Furthermore, let
~t be the dominant direction of the trail: we define ~t as
the (horizontal) direction towards which a hiker would start
walking if standing at the position of the robot, with the goal
of remaining on the trail (see Figure 3).
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Fig. 3: Left: given a point, ~t is the direction a hiker would walk in
order to follow the trail. Right: illustration of ~v, α, β (see text).

Let α be the signed angle between ~v and ~t: we consider
three classes, which correspond to three different actions that
the (human or robotic) carrier of the camera should implement
in order to remain on the trail, assuming that the camera is
looking at the direction of motion.
Turn Left (TL) if −90◦ < α < −β; i.e., the trail is heading

towards the left part of the image.
Go Straight (GS) if −β ≤ α < +β; i.e., the trail is heading

straight ahead, at least in the close range.
Turn Right (TR) if +β ≤ α < +90◦; i.e., the trail is heading

towards the right part of the image.
Given the input image, our goal is to classify it in one of these
three classes. In the following, we consider β = 15◦.

Note that, in case the absolute value of α is large, the trail
may entirely lie outside of the camera field of view; e.g., this
happens if the robot is looking in a perpendicular direction
with respect to the trail. In that case, the image only allows
us to infer that the true class is not Go Straight (GS).

III. VISUAL PERCEPTION OF FOREST TRAILS

We solve the problem as a supervised machine learning
task, which is extremely challenging because of the wide
appearance variability of the trail and its surroundings: per-
ceptions are heavily affected by lighting conditions, vegetation
types, altitude, local topography, and many other factors. We
deal with such challenges by gathering a large and represen-
tative labeled dataset, covering a large variety of trails and a
long distance on each.

A. Dataset

To acquire such a dataset, we equip a hiker with three head-
mounted cameras: one pointing 30◦ to the left, one pointing
straight ahead, and one pointing 30◦ to the right; the fields
of view of the three cameras partially overlap and cover
approximately 180 degrees (see Figure 3). The hiker then
swiftly walks a long trail, by taking care of always looking
straight along its direction of motion. The dataset is composed
by the images acquired by the three cameras.

Each image is labeled, i.e. it is associated to its ground
truth class. Because of the definition of our classes, all images
acquired by the central camera are of class GS: in fact, they

were acquired while the hiker was walking along the trail, and
looking straight ahead (i.e., α ≈ 0◦) in the direction of motion.
Conversely, the right looking camera acquires instances for the
TL class, with α ≈ 30◦; and the left-looking camera acquires
instances of the TR class (α ≈ −30◦).

The dataset1 is currently composed by 8 hours of 1920 ×
1080 30fps video acquired using three GoPro Hero3 Sil-
ver cameras in the configuration outlined above, and cov-
ers approximately 7 kilometres of hiking trails acquired at
altitudes ranging from 300m to 1,200m, different times of
the day and weather. Exposure, dynamic range and white
balance are automatically controlled by the cameras. To avoid
long exposure times, which would yield to motion-blur, all
sequences are acquired during daytime, excluding twilight.
Many different trail types and surroundings are represented,
ranging from sloped narrow alpine paths to wider forest roads.
Acquisitions are normally uninterrupted unless for technical
reasons or to avoid long sections on paved roads; this ensures
that the dataset is representative not only of ideal, “clean”
trails but also of frequent challenging or ambiguous spots often
observed in the real world. Synchronized GPS and compass
information has been recorded for most sequences, but is
unused at the moment.

The dataset has been split in disjoint training (17,119
frames) and testing (7,355 frames) sets. The split was defined
by carefully avoiding that the same trail section appears in
both the training and testing set. The three classes are evenly
represented within each set.

B. Deep Neural Networks for Trail perception

We use a DNN [17] as an image classifier, and adopt the
network architecture detailed in Figure 5, that has been shown
to perform well when applied to a large amount of image
classification problems [17]; in particular, we consider a matrix
of 3 × 101 × 101 neurons as the input layer, followed by a
number of hidden layers and three output neurons.

The input image is first anisotropically resized to a size of
101 × 101 pixels; the resulting 3 × 101 × 101 RGB values
are directly mapped to the neurons in the input layer. For a
given input, the DNN outputs three values, representing the
probability that the input is of class TL, GS, TR, respectively.

Training a net: The 17,119 training frames are used as
training data. The training set is augmented by synthesizing
left/right mirrored versions of each training image. In partic-
ular, a mirrored training image of class TR (TL) yields a new
training sample for class TL (TR); a mirrored GS training
sample yields another GS training sample. Additionally, mild
affine distortions (±10% translation, ±15◦ rotation, ±10%
scaling) are applied to training images to further increase the
number of samples. The DNN is trained using backpropagation
for 90 epochs, which requires about 3 days on a workstation
equipped with an Nvidia GTX 580 GPU. The learning rate
is initially set to 0.005, then scaled by a factor of 0.95 per
epoch.

1The whole dataset is available as supplementary material [28]
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Fig. 4: Left: stylized top view of the acquisition setup; Right: our hiker during an acquisition, equipped with the three head-mounted cameras.

Fig. 5: Architecture for the DNN [17] used in our system, and
representation of the maps in each layer

DNN architecture: A DNN is a feed-forward connectionist
model built out of successive pairs of convolutional and max-
pooling layers, followed by several fully connected layers (the
architecture adopted in our system is illustrated in Figure 5).
Input pixel intensities, rescaled to the range [−1, 1], are
passed through this complex, hierarchical feature extractor.
The fully connected layers at the end of the network act as
a general classifier. The free parameters (weights), initialized
with random numbers from an uniform distribution in the
range [−0.05, 0.05], are jointly optimized using stochastic
gradient descent to minimize the misclassification error over
the training set.

Convolutional layers [29] perform 2D convolutions of their
input maps with a rectangular filter. When the previous layer
contains more than one map, the results of the correspond-
ing convolutions are summed and transformed by a scaled
hyperbolic tangent activation function. Higher activations will
occur where the filter better matches the content of the map,
which can be interpreted as a search for a particular feature.

The output of the max-pooling (MP) layers [30] is formed by
the maximum activations over non-overlapping square regions.
MP layers decrease the map size, thus reducing the network
complexity. MP layers are fixed, non-trainable layers selecting
the winning neurons. Typical DNNs are much wider than
previous CNN, with many more connections, weights and
non-linearities. A GPU implementation [31] is used to speed
up training. The output layer is a fully connected layer with
one neuron per class (i.e. TL, GS and TR), activated by a
softmax [32] function. Each output neuron’s activation can be
interpreted as the probability of the input image belonging to
that class.

IV. EXPERIMENTAL RESULTS

Performance metrics: We use the testing set defined in
Section III-A (7355 images) in order to compute performance
metrics for different classification techniques.

For the three-class classification problem defined in Sec-
tion II, we compute the absolute accuracy (i.e. fraction of
correctly classified images) and the confusion matrix.

We additionally consider a derived two-class classification
problem, on which additional, more robust performance mea-
sures can be defined. In the two-class problem, one has to
decide whether an input image is of class GS or not (i.e.,
whether a trail is visible straight ahead, or not). The image
is classified as GS if and only if P (GS) > T . We report
the accuracy of the binary classifier for T = 0.5, and the
corresponding precision, recall, and the area under the ROC
curve (the last is a robust metric and does not depend on the
choice of T ).

Comparisons: In the following, we compute the perfor-
mance of our technique (DNN), where P (TL), P (GS) and
P (TR) are directly computed by applying the DNN model
to the input frame. We compare its performance to three
alternatives.
1. Simple Saliency-based Model. We compute saliency

maps of the input frame using Itti’s model [33], as in
Santana et al. [12]. This map is computed on the image
hue only, which preliminary experiments shown to be
the configuration where saliency is most correlated to
trail location. The saliency map is discretized to 16 × 9
blocks, and the average saliency for each block yields a
144-dimensional feature vector. A SVM model with an
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TABLE I: Results for the three-class problem.

DNN Saliency [12] Human1 Human2

Accuracy 85.2% 52.3% 36.5% 86.5% 82.0%

TABLE II: Results for the two-class problem.

DNN Saliency [12] Human1 Human2

Accuracy 95.0% 73.6% 57.9% 91.0% 88.0%
Precision 95.3% 60.9% 39.8% 79.7% 84.0%
Recall 88.7% 46.6% 64.6% 95.1% 81.6%
AUC 98.7% 75.9% – – –

RBF kernel is learned from the training set to map this
feature vector to P (TL), P (GS) and P (TR).

2. The method by Santana et al.. The algorithm in [12] is
applied to the frames extracted from our videos (50
iterations per frame) and its output trail soft segmentation
is sampled at each of the testing frames. In order to
map a class to a segmentation, we follow the quantitative
evaluation in [12]: a single representative point for the
trail is computed as the centroid of the largest connected
component in the binarized trail probability map; the
threshold is computed as 0.85 · M , where M is the
maximum value of the probability map. Then, we classify
an image as TR (respectively, TL) if the x coordinate of
the point is larger than (0.5+k)·W (respectively, smaller
than (0.5 − k) ·W ), where W is the image width; else,
the image is classified as SC. k is chosen in order to
optimize the accuracy of the resulting classifier.

3. Two human observers, each of which is asked to classify
200 randomly sampled images from the testing set in one
of the three classes.

Tables I and II report quantitative results for the three-
and two-class problems, respectively. We observe that DNN
methods perform comparably to humans, meaning that they
manage to extract much of the information available in the
inputs. The Simple Saliency Model and [12] perform poorly on
this data, which is expected as image saliency is not correlated
to the trail location in most of our dataset.

Failure Cases and Qualitative Results

Figure 6 reports success and failure cases on the testing set.
We observe that instances which are easy for our system are
also trivial for human observers, whereas instances that our
system failed (third and fourth row) are in fact difficult and
ambiguous cases also for humans.

We also implemented an additional qualitative test using
videos acquired from a Samsung Galaxy SIII cellphone on a
sloped forest trail in a different region than those in which our
dataset was acquired. These videos have a much lower field of
view than the dataset videos (about 60◦ vs 120◦), are highly
compressed, and frequently exhibit under/over exposed areas
due to the limited dynamic range of the sensor. The viewing
direction rotates frequently in such a way that the trail is not
always in the center of the frame, and is often not visible at all.
Figure 7 reports three representative frames from one of these

videos (available as supplementary material [28]), overlayed
with the outputs of our system.

Control of a Robot for Autonomous Trail Following

It is interesting to study how well a robot navigates in the
real world when using exclusively the information provided
by our vision system as input. In order to investigate this,
we implemented a simple reactive controller which translates
our system’s outputs to control signals as follows. Yaw (i.e.
steering) is proportional to P (TR)− P (TL); a positive value
steers the robot to the right, and a negative value steers the
robot to the left. Speed is proportional to P (GS).

We tested such controller on two platforms. 1) A Parrot
ARDrone controlled by a laptop (Figure 8, left). 2) A stan-
dalone quadrotor [34] (Figure 8, center and right) equipped
with: a forward-looking MatrixVision mvBlueFox global shut-
ter color camera (752 × 480 pixels), used for trail detec-
tion; a down-looking MatrixVision mvBlueFox global shutter
grayscale camera (752×480 pixels), used for feeding a Semi-
direct monocular Visual Odometry (SVO) pipeline [35]; an
onboard Odroid-U3 system for image processing and control.
The Odroid processor runs both our deep neural network and
the SVO pipeline simultaneously at more than 15fps; the
former component produces high-level velocity commands,
whereas the latter is used for feedback position control.

The main problem we observed during our tests in realistic
conditions was the much lower image quality acquired by
the quadrotors’ cameras as compared to the gopro images in
the training dataset; this yielded a lower performance of the
classifier compared to the testing datasets. This was especially
apparent in situations with strong sky-ground contrast, as the
dynamic range of the mvBlueFox camera cannot capture well-
exposed footage. We also observed that the quadrotor is often
unable to negotiate trails if there is not enough free space
besides the trail centerline: in fact, if the yaw is roughly
correct, the classifier compensates a lateral shift only when
the quadrotor is about one meter off the centerline; because
the current pipeline does not implement explicit obstacle
detection and avoidance, this results in frequent crashes on
trails with narrow free space. On wide trails with even lighting
conditions, the robot was able to successfully follow the trail
for a few hundreds of meters.

V. CONCLUSIONS

We trained a Deep Neural Network for visually perceiving
the direction of an hiking trail from a single image. Trained
on a large real-world dataset and tested on a disjoint set, the
system performs better than alternatives and comparably to
humans. By operating on the raw RGB frames, we bypass the
need to define characteristic features of trails, which is a very
difficult task given the huge variability of their appearance.
The system was implemented and demonstrated on a real
quadrotor. Preliminary field tests showed promising results.
The training and testing datasets are provided for download.



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2015.2509024, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015

(a) GS frames with highest P (GS), i.e. frames where the path is easily found as being straight ahead

(b) not-GS images with lowest P (GS), i.e. frames where the path is easily found as not being straight ahead

(c) GS images with lowest P (GS), i.e. failure cases where the path should be straight ahead but was not detected as such

(d) not-GS images with highest P (GS), i.e. failure cases where the path is not straight ahead but was detected as such

Fig. 6: Success and failure cases. More examples are reported in supplementary material [28].

Fig. 7: Three representative frames form the cellphone video robustness test. For each frame, we report the raw network outputs for that
frame (bar graph), and the motion policy (arrow) derived from such outputs averaged over the previous 10 frames (see text). The rightmost
frame is acquired when looking sideways, so the trail is not visible; the DNN is then rightfully confused among TR and TL, but returns a
very small value for P (GS).

.
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Fig. 8: Images from preliminary field testing. Left: the Parrot ARDrone controlled by a laptop. Center, right: the standalone quadrotor with
SVO and onboard processing [34].

.
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