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Abstract

More than 80 billion Dollar, that’s the drone market value by 2025, according to Forbes [5]
prediction in 2020. The potential addressable market for autonomous drone applications
is gigantic, reaching from consumer products over cinematography, remote sensing, and
entertainment, to delivery, transportation, emergency services, and search and rescue.
And yet, there is an immense disconnect between the flight performance of autonomous
systems and human pilots, capable of guiding remote-controlled drones at impressive
speeds through a track in a sport called drone racing. Why is there such a dwelling gap
between human and machine performance? Clearly, industrial applications would greatly
benefit from agile and fast flight capabilities in terms of profitability and robustness, and
companies aspire to achieve ever-increasing efficiency and productivity. What hinders the
industry from exploring and exploiting the full potential of drones, such as quadrotors?

In fact, quadrotors are amongst the most agile and maneuverable vehicles ever created.
Combined with their mechanical simplicity, low cost, and vertical takeoff and landing as
well as hover capabilities, they rose to become the most prominent aerial platform for
emerging technologies. Even though quadrotors are a single rigid body with thrusters,
their fast rotational dynamics and powerful but underactuated acceleration capabilities
render them both surprisingly maneuverable and difficult to control. Challenges arise
especially from their non-linear and underactuated system dynamics, for which hierarchical
planning algorithms and cascaded control architectures are inadequate solutions. These
classic approaches to mobile robot navigation typically assume linear time-invariant
dynamics and unbounded inputs, both of which are improper assumptions for quadrotors
and lead to overly conservative performance, infeasible actuator commands, or even
instability. However, to allow navigation algorithms to exploit the full capabilities of
quadrotors and achieve agile yet robust control performance, they need to be able to deal
with non-linearities and actuator bounds, both in planning and in control.

On the other hand, in the 1960s, Kalman laid the foundation for both optimal linear
quadratic control and estimation. These methods were only one part of the history that
forms today’s optimal control paradigm, which comes in a number of approaches to
estimation, planning, and control, applied to a vast variety of systems. One subset of
these methods is especially interesting for quadrotors, namely non-linear model-predictive
control (NMPC), and its sibling, trajectory optimization. NMPC exploits analytical
models of the dynamics to predict a system’s state over a receding horizon and optimize
the system inputs and prediction to minimize a, typically quadratic, cost function. It is
highly advantageous in that it can account for non-linear systems and actuator constraints,
and enables versatile task formulations while providing intuitive performance tuning.
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Abstract

Recent advances in compute capabilities and implementation strategies of the resulting
numerical optimizations nowadays allow even complex problems to be optimized in
real-time onboard resource-limited vehicles, such as size and weight constrained aerial
platforms.

This thesis investigates how such novel optimization-based planning and control strate-
gies can be applied to enable autonomous quadrotors to exploit their full performance
envelope and allow for agile and robust autonomous flight. Among others, this thesis
provides contributions allowing quadrotors to fly at their actuation limit, culminating in a
framework that even beats expert human drone racing pilots in a time trial demonstrator.
The presented methods first address the problem of time-optimal planning for quadrotors,
proposing a novel progress-based formulation allowing the computation of trajectories
through multiple waypoints at the limit of the quadrotor’s performance envelope. This
planning approach is followed by building up a non-linear model-predictive control frame-
work for accurate, agile, and robust navigation, allowing the real-world demonstration of
the previous time-optimal planning approach. To complete the time-optimal planning
and control contributions, this thesis also provides insight into high-fidelity modelling of
aerodynamic effects on quadrotors and provides a method to measure those effects in a
visual-inertial odometry framework.

Overall, the contributions of this work aim to answer the question of How can control
and planning strategies exploit the full capabilities of quadrotors? In the following is a list
of contributions:

• The first method to generate time-optimal quadrotor trajectories through multiple
waypoints under non-linear system dynamics and actuator constraints.

• A non-linear model-predictive control (NMPC) framework including the full quadro-
tor dynamics and single-rotor actuation constraints, and, for the first time, also
perception objectives.

• A complete framework for agile drone flight providing open-source and open-
hardware resources, incuding mission and task logic, state estimation, trajectory
planning, and non-linear model-predictive control. This framework has been used
in collaborative work providing further insights into comparative evaluations of
NMPC and classic control strategies, rotor-failure-tolerant NMPC, approximate
time-optimal NMPC, and aerodynamic modelling for simulation and control pur-
poses.

• A method to estimate residual forces within an visual-inertial odometry, which can
be used to identify residual terms not covered by the modelled system dynamics,
such as aerodynamic forces.
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1 Introduction

This thesis presents novel planning and control methods for rotorcraft vehicles bridging
the gap between human and autonomous piloting performance. In the past decade, we
have seen the initial rise of remotely piloted and autonomous aerial rotorcraft vehicles,
from here on called drones in general and quadrotors more specifically. Even though
autonomous solutions have been developed and deployed in various consumer products
[217, 53], human pilots have outperformed algorithms in terms of robustness, agility,
and speed. Especially with the advent of drone racing [247], the gap between human
piloting capabilities and autonomous vehicles became embarrassingly apparent, leading to
a mismatch between the publicly perceived capabilities of drones and the actual robustly
feasible autonomous capabilities. More importantly, applications such as package delivery,
warehouse inventory tracking, remote sensing and observation, cinematography, and
search and rescue inherently require a sophisticated level of robustness and speed to
be of any economic value. Or as Steven Hawking said in his book [93]: "Robots will
definitely speed up the online retail process. But to revolutionize shopping, they need
to be fast enough to allow same-day delivery on every order." Is it possible to exploit
the full capabilities of quadrotors with autonomous systems? This thesis addresses the
robustness and speed gaps between human pilots and autonomous systems by proposing
planning and control algorithms that enable a new regime in autonomous agile flight and
even surpass human capabilities.

Quadrotors are exceptional mobile robots, being both mechanically simple but dynami-
cally complex. Even though quadrotors are a single rigid body with thrusters, their fast
rotational dynamics and powerful but underactuated acceleration capabilities render them
both surprisingly maneuverable and difficult to control. Classic autonomous navigation
algorithms separate perception, planning, and control into separate subsystems and split
the control architecture into multiple cascaded feedback loops. Both of these practices,
separation and cascading, are common and well-established techniques originating from
linear system control theory under the assumption of precise state estimation or mea-
surements and non-saturating actuators. However, the dynamics of quadrotors are highly
non-linear on multiple time scales, underlie strict actuator constraints, and introduce a
coupling between perception and action. As a result, cascaded controllers must apply
restrictive linearizations and conservative bounds, while planning approaches often rely on
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Chapter 1. Introduction

unrealistic approximations of the real system, both of which severely limit the performance
and restrict autonomous systems to a small subset of the feasible flight envelope. Finally,
because mobile robots can be deployed in arbitrary environments, they have to rely mostly
on proprioceptive sensing and onboard estimation, such as visual-inertial odometry. These
measurement modalities are influenced by the drone’s egomotion, which implies that
overly aggressive maneuvers degrade measurement quality, e.g. through motion blur in
camera images. Therefore, to exploit the true capabilities of quadrotors and achieve
robust and agile flight, we must face the fundamental technical challenges of accounting
for real non-linear dynamics, actuation bounds, and perception-action-coupling in all
stages of a navigation system, which formulates the research question of my work.

Specifically:

• How can we generate fast and agile flight paths?

• How can we simultaneously achieve robust, versatile, and agile control for fast and
reliable mission execution with drones?

• Is it possible to exploit the coupling between action and perception on aerial robots?

To address these questions, my work combines theories and methods from model-predictive
control (MPC), numerical optimization, and vision-based estimation.

In 1960, Kalman presented "Contributions to the Theory of Optimal Control" [107]
and "A New Approach to Linear Filtering and Prediction Problems" [106], both of
which laid the foundation for linear-quadratic regulator (LQR) and Gaussian estimators,
respectively. These were the first provably optimal approaches to estimate and control
linear time-invariant systems under Gaussian noise assumptions and unbounded states
and inputs over infinite time horizons. As such, these methods are extremely powerful and
have not only been deployed in countless applications, but also commenced a whole new
research field on optimal control. More recent developments adapted Kalman’s principles
by introducing repeated linearization for time-varying or non-linear systems, discretization
of finite time horizons (also known as "sliding-window"), and constrained optimization
to address state and input bounds. More importantly, these advances apply to both
estimation and control, which in fact share their problem structure as optimizations
under Gaussian assumptions, and can be reduced to non-linear constrained least-squares
formulations. The culmination of those improvements is non-linear model-predictive
control and its sibling, non-linear sliding-window estimation, both of which became
influential research directions and have lately been applied in the field of chemical process
control, aeronautic and space exploration, autonomous driving, general mobile robotics,
and even state estimation on handheld devices for augmented and virtual reality.

Inspired by the capabilities of these optimal methods and the impressive maneuverability
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Figure 1.1: A quadrotor flying along a time-optimal trajectory using non-linear model-predictive
control. In such fast flight maneuvers, it is crucial to account for non-linear system dynamics,
acutator saturation, and high-fidelity models.

of quadrotors, this work will answer the research questions through a combination of
optimization-based planning and control.

As a common demonstrator, I will consider the problem of autonomous drone racing. In
order to be successful, an autonomous system must be able to fly as fast as possible, or even
time-optimal, while ensuring completion, since any crashes or missed gate passes count as
a failed attempt. Therefore, achieving optimal performance requires the navigation system
to be fast, robust, and precise, challenging both the planning and the control strategies.
Furthermore, this demonstrator brings the advantage of having access to highly proficient
baselines in the form of expert human pilots. The relevance of this demonstrator is linked
to the requirements for safe and efficient deployment of aerial drones in industrial and
consumer-oriented applications. First, delivery, mapping, exploration, and inspection
tasks profit from efficient mission execution. Second, cinematography through subject
tracking requires a high level of agility to chase a subject along arbitrary movements and
record visually appealing footage. Third, in search and rescue tasks time-optimal location
of casualties is critical and can even be life-saving. But all those applications only profit
from speed if and only if a mission can be completed successfully, which implies that fast
execution only brings value if it does not harm robustness, which closely relates those
tasks to the chosen demonstrator, drone racing.

This thesis is split into three parts. First, I present an approach to time-optimal
planning for quadrotors. While there already exist multiple approaches to plan quadrotor
trajectories, none of these do so in a time-optimal fashion while respecting the true
dynamics and actuator limits of the vehicle. In this part, I introduce a novel method
to plan trajectories through a sequence of waypoints, while ensuring feasibility at the
limit of the vehicle’s capability, and for the first time exploiting the quadrotor’s full
flight performance envelope. Second, I apply novel control strategies enabling robust
execution of a large variety of tasks. This is done in multiple successive steps, starting
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with a state-dependent linear-quadratic regulator (LQR) controller to relax linearisation
approximations, followed by including system state and input boundaries through NMPC,
which is extended to multiple different applications. Finally, in the third part of the thesis,
I present state estimation and system modelling techniques, two critical components when
applying previously established methods to real-world systems.

All parts address the driving research question of this work - how can we exploit the
full capabilities of quadrotors? - from a different perspective but with the same goal:
enabling robust and agile autonomy.

This thesis is structured in the form of a collection of papers. An introductory section
that highlights the concepts and ideas behind the thesis is followed by self-contained
publications in the appendix. Chapter 1.1 elaborate on the relevance of the proposed
research questions and motivates the research objective of this work. Chapter 1.2 places
this research in the context of the related work. Chapter 2 explains the contributions
of the published research papers and their relation. Finally, Chapter 3 provides future
research directions.

1.1 Motivation

Quadrotors are amongst the most agile and maneuverable aerial robots [2, 242], and
have disrupted industries such as agriculture, cinematography, architecture and building
information management, warehouse inventory tracking, search and rescue, and remote
sensing. Exploiting their agility in combination with full autonomy is crucial for a large
variety of missions, such as inspection and observation, delivery and transportation [192],
and even entertainment such as drone racing [129, 247]. For this reason, over the
past decade, research on autonomous, agile quadrotor flight has continually pushed
platforms to higher speeds and agility [151, 130, 152, 238, 110, 132, 260, 68, 125, 171,
112, 71]. Million-dollar projects, such as AgileFlight [40] and Fast Lightweight Autonomy
(FLA) [152], have also been funded by the European Research Council and the United
States government, respectively, to further push research. Additionally, many competitions
have been organized, such as the autonomous drone racing series at the recent IROS
and NeurIPS conferences [153, 38, 110, 140] and the AlphaPilot challenge [88, 68], with
the goal to develop autonomous systems that will eventually outperform human pilots.
However, human pilots accomplish drone racing with astonishing performance, guiding
their quadrotors through race tracks at speeds so far unreached by any autonomous
system.

Nevertheless, the adaption of autonomous vehicle utilization for industrial and commercial
applications is increasing at an astonishing rate, with over 300’000 commercial drones
registered in the US alone [212] and an estimated global drone service market value rise
from 4.4B$ to more than $60B by 2025 according to Business Insider [170], and to over
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$80B according to Forbes [5].

To meet this promising demand, live up to the expectations of the industry, and enable
novel applications beyond today’s, autonomous mobile robots must become robust enough
to earn the trust of consumers, and fast enough to be of any significant profit.

1.1.1 Advantages

Optimization-based methods such as model-predictive control and trajectory planning
bring a number of advantages that significantly advance robustness and exploit agility for
fast mission completion. The following are three significant advantages these technologies
could enable in the future.

Accurate Dynamic Models and Actuator Bounds Model-predictive control, as
the name implies, exploits the fact that the evolution of a mechanical system over time
can be modeled and, given the current state, predicted along a future time horizon.
This enables approaches which not only react based on measurements made at specific
time instances, but also their impact on the system in the future, allowing to trade-off
momentary and future effects. This allows creating control policies that, different from
classic state-feedback control, not only suppress momentary tracking errors, but exploit
the dynamics of the system to find actions that enable the best possible performance in
the future. Similarly, such model-based approaches allow one to correctly account for
actuator bounds over the entire prediction horizon.

These properties are especially beneficial for the control of quadrotors due to their non-
linear integral system dynamics and bounded low-level actuation. Short-time prediction of
the quadrotor’s future trajectory helps to anticipate rapid changes in the flight path and
balance disturbance rejection and alignment with the desired future trajectory. Moreover,
it enables foreseeing actuator saturation, e.g. due to large perturbations, and counteract
them preemptively.

Last but not least, dynamic models can not only be used in trivial simulations or short-
term predictive control, but also to plan and refine trajectories spanning a complete task
or even mission. This is done by leveraging analytical models in numerical optimization to
find the best possible solutions to certain problems. Compared to alternative approaches,
which rely on closed-form solutions or dynamic programming, numerical optimization
does not rely on system approximations or hierarchical abstractions. In the context of fast
and agile flight, trajectory optimization enables the computation of feasible trajectories
at the system’s true dynamic limits, as shown in Paper A [71].
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Figure 1.2: The approach from Paper G exploiting novel perception-aware model-predictive
control and task formulation in the cost function to keep a point of interest in the camera view.

Versatile Task Formulation and Tuning Formulating control or planning problems
as the optimization of a cost function over a state and input space allows encapsulating
nearly arbitrary task descriptions. Different from cascaded control loops, MPC does not
require the definition and tuning of feedback laws for all intermediate states but allows to
penalize task-specific choices of direct states, inputs, or functions of those. This versatility
in cost function design not only avoids over-penalization of underactuated state spaces,
such as in the case of quadrotos, but also enables novel objective formulations, such as
perception-aware control strategies in Paper G [59] (Figure 1.2), progress-maximizing
controllers [197], or time-optimal planning in Paper A [71].

Additionally, even though popular methods exist to tune proportional-integral-derivative
controller (PID) controllers [262], those rely on identification of certain (closed-loop)
system properties, typically require manual adjustments, and for non-linear systems result
in either over-conservative or potentially unstable performance. Conversely, in an MPC
approach, the most fundamental cost function is a weighted quadratic penalty on the
variable space, which allows the intuitive interpretation as a joint tradeoff between the
variance of states and inputs over the prediction horizon. As an example, designing
reference tracking controllers becomes as simple as defining the individual relevance of
actuation and tracking errors for all states, or, in the case of a quadrotor, all differentially
flat outputs and (optionally) their derivatives.

Simple Extension to New Capabilities The aforementioned versatility also enables
fast prototyping and adaptation to new inputs, system dynamics, and control objectives.
With each advancement in robotics, researchers face new challenges, which necessitates
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adaptive methodologies that can grow in complexity and fidelity as robotics grows into
maturity. Optimization-based techniques like MPC are well suited for this task since the
underlying system dynamics, actuation and sensing modalities, and objective formulations
can develop independently and enable both bottom-up and top-down approaches.

As an example, quadrotor control and planning algorithms [149, 159, 58] typically use a
certain abstraction level for their actuation modality. Traditionally collective thrust and
bodyrates are used as high-level commands, which are tracked by low-level controllers,
but neglect the actual actuator bounds. NMPC allows us to model also these low-level
dynamics, whether or not they are used as actuation commands, increasing the modelling
accuracy and therefore also the prediction and control performance, as demonstrated
in [239].

This extendability also allows adapting existing solutions to new challenges. For example,
flying accidents owing to system malfunctions, such as rotor failures, are major stumbling
blocks to the development and the public acceptance of the drone industry. However,
thanks to their non-linear dynamics, quadrotors can still remain airborne and under
control, even when one actuator fails, but the control strategies developed so far are highly
specified and do not allow to recover from arbitrary maneuvers [228]. To achieve fault-
tolerance and even recover from aggressive maneuvers without having to design specific
new algorithms, the general-purpose MPC developed in the context of Paper B [73] has
been adapted in [167] to allow robust recovery after rotor failures and full translational
control, even tracking fast trajectories with a damaged quadrotor. While this contribution
could potentially save countless drones from crashes due to damaged propulsion systems,
it consists only of slight adaptions of the cost function and a change in the actuator
constraints upon failure detection, but does not limit or impair the control performance.

Interpretability and Relation to Estimation Problem Many problems can be
efficiently formulated by minimizing quadratic cost functions, which closely relate or even
are equal to least-squares formulations. Naturally, these quadratic minimizations represent
the optimal solution under Gaussian noise or disturbances, which renders them well suited
for real-world applications, where Gaussian noise often is a viable approximation or even
an accurate representation of true uncertainty.

Furthermore, this allows an intuitive interpretation of the main configuration parameters
of such methods, namely the individual weights of a quadratic loss function. In particular,
quadratic cost functions correspond in their minima to the minimal Malahanobis norm,
equal to the maximum likelihood given a Gaussian distribution, where the cost function
weights are the inverse of the distribution’s variance. This gives a simple interpretation
of the cost function, for example, in the case of controller tuning as mentioned in the
previous Paragraph 1.1.1.
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Finally, and most importantly, the similarity between LQR, MPC, trajectory planning, and
least-squares problems also relates them to most estimation problems that follow Gaussian
noise assumptions, such as the Kalman filter [106] in the simplest case, or factor-graph
representations of moving-horizon estimators [46]. Since both, MPC and moving-horizon
estimator (MHE), typically optimize quadratic costs over a moving relative time window,
similar methods and practices can be used to solve them efficiently and potentially even
unify them. This could allow profiting from shared data (measurement and task-related),
better account for perception-action coupling on mobile robots, and lower computational
costs causing reduced latency and, therefore, better control performance.

1.1.2 Challenges

Despite their numerous advantages, optimization-based methods also bring their specific
challenges. These challenges arise from two main difficulties: i) they rely on system
dynamic models where any inaccuracies or uncertainties result in degraded solution
quality; and ii) non-linear optimization with limited compute resources strictly relies on
convex problem formulations and even then is difficult to formulate into computationally
tractable descriptions.

Dynamic Model Accuracy and Complexity First and foremost, the aforementioned
opportunities all rely on modelling the dynamics of a robot. While this is possible using
first-order principles and system identification, it is often tedious or even impossible to
achieve arbitrary model fidelity. Simple models, such as the quadrotor’s translational and
rotational high-level dynamics, can be derived ideally as integrators without parameters.
However, lower-level models, such as the acceleration dynamics, are not only specific to
the vehicle’s physical parameters but also include aerodynamic effects, which are not only
complex to model but even chaotic in nature.

Therefore, one of the challenges is to pick a level of model-fidelity that is accurate enough
for all tasks at hand yet simple enough to obtain with practical effort. Models of low
quality inherently deteriorate real-world performance since the planned trajectories or
predicted motions would not comply with the real system behavior. However, high-fidelity
models often imply significantly increased computational effort, can potentially overfit
and become decremental due to variations in the real system, and might even render
applicability in optimizations unfeasibly by introducing multimodal behavior or severe
non-convexity.

A prominent example of model complexity mismatch appears in trajectory planning for
quadrotors, which has been done for years through simplified models relying on dynamic-
flatness [149, 159, 58] or even point-mass assumptions, but is incapable of producing
trajectories at the boundary of the real actuator constraints. My work demonstrates a
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gradual increase of the model fidelity, starting with simple models in [72] and Paper G [59],
to true actuator limits in Paper A [71] and Paper B [73], and finally extending to
aerodynamic identification in [239, 19].

Computational Tractability Optimization problems of arbitrary size and nature
are typically solved using iterative approximative methods, such as gradient descent or
Newton’s method for unconstrained problems, Gauss-Newton method and Levenberg-
Marquardt for unconstrained least-squares, or interior-point methods for constrained
(and desireably convex) non-linear problems. However, all of those methods rely on
the iterative linearization of a non-linear system with differentiable cost and constraint
functions. This generally implies two challenges: i) calculation of the Jacobians and
linear decompositions (e.g. in interior-point methods) can be computationally extremely
demanding, and ii) convergence on non-linear problems can be arbitrarily slow. Therefore,
non-linear optimization can require a significant amount of computation time, rendering
it challenging to apply those methods to real-time systems.

While planning problems typically do not have strict limits on computation time, it
directly affects the possible frequency at which replanning can be performed. The lower
the computation time of a planning algorithm, the faster it can adapt to changes in the
environment or in the task, such as the appearance of dynamic obstacles, large deviations
from the planned flight path, or refinement of a waypoint location. The latency at which
this adaption can be handled directly impacts how fast the vehicle can move without
risking invalidating the previously planned trajectory.

Depending on the application and the environment, it can be feasible to perform planning
purely prior to execution time, e.g. in a static environment. On the other hand, in case
of MPC or MHE, the real-time requirements are as strict as the dynamic bandwidth of
the respective system. In the case of quadrotor control, this means that optimization
solutions need to be available hundreds of times per second with low latency. Most mobile
systems also require onboard execution of these problems, which often tremendously
limits the available computational resources due to size and weight constraints on mobile
aerial vehicles.

As a result, the feasible complexity and time horizon of MPC problems are strictly
constrained. To handle this challenge, it is critical to consider complexity, convexity,
linearization properties, and the solution process when designing such optimization
problems. Additionally, there is one strong real-world property that can be exploited
to design an efficient solution scheme: dynamic systems only evolve at a certain rate,
which implies that solutions of consecutive timesteps typically are similar and within a
certain distance measure from each other. This allows one to use previous solutions as
an initial guess for consecutive problems, and in the extreme case, even use individual
iteration results as intermediate best solutions. This practice described in [52, 253] allows
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using approximations of solutions at extremely high rates and with low latency, enabling
otherwise impossible closed-loop control with optimal policies even on computationally
limited platforms.

Convexity Last but not least, convexity is one of the most desireable – but usually
unattainable – problem properties for non-linear optimization approaches. If a problem is
not convex, it can have more than one local extremum, which can or can not coincide with
the true global extremum. In this case, it becomes non-trivial or even impossible to verify
that any stable point of the cost function is a global extremum. Methods that can partially
overcome such problems apply sampling techniques, which are costly to run and therefore
unfeasible for time-critical problems. On the other hand, convex (non-linear) problem
formulations, or initializations within a convex region around the global optimum, can
be solved quickly and reliably using iterative methods, e.g. gradient-descent, Newton’s
method, Gauss-Newton algorithm for quadratic cost functions, amongst others.

As a result of the real-time requirements in control, special care has to be taken when
designing NMPC formulations. Possible solutions to circumvent convexity issues are
relaxations and local parametrizations that render the problem at least quasi-convex
(gradient towards the optimum), combined with initialization or warm-starting in the
local neighborhood of the global optimum. Such techniques are already used to model
rotations, e.g. through tangent-space formulations for quaternions. However, sometimes
it is also possible to apply a solution even though it is suboptimal, as long as it is feasible.
This is especially true for NMPC and planning approaches, where it is preferable to apply
suboptimal but feasible (and stable) candidate solutions than discarding solutions and
jeopardizing stability.

These challenges have been faced and discussed specifically in my Paper A, where I
present an approach to time-optimal planning that always generates feasible solutions
but can not guarantee global optimality. Special cases are demonstrated where a trivial
initial guess can change the solution from local to global optimality.
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Figure 1.3: A qualitative visualization of existing autonomous quadrotor platforms used
for research, industrial and commercial applications. The open-source frameworks FLA[152],
ASL[206], and MRS[13] have relatively high autonomy capabilities but low agility. While the
DJI[53], Crazyflie[86], and Parrot[208] have some supportive autonomy features, they do not
allow autonomous deployment in any form. The MIT[10] and GRASP[130] platforms support a
variety of autonomous flight functionality with mediocre agility, but are intended for research
purposes and, in the case of the MIT-quad, limitted to instrumented environments. Finally,
the Skydio[217] is provides multiple fully autnomous application capabilities for commercial
and industrial applications at a reasonable level of agility. The goal of this thesis (top-right)
is to provide methods that push the state of the art towards a higher level of autonomy while
significantly increasing the agility and flight performance envelope.

1.2 Related Work

Over the past decade, research on autonomous, agile quadrotor flight has continually
pushed platforms towards higher auonomy, speeds, and agility [92, 147, 86, 208, 217, 151,
130, 58, 152, 206, 260, 125, 171, 176, 13] (Figure 1.3).

To further advance the field, several competitions have been organized—such as the
autonomous drone racing series at the recent IROS and NeurIPS conferences [153, 38,
110, 140] and the AlphaPilot challenge [88, 68]—with the goal to develop autonomous
systems that will eventually outperform expert human pilots.

This chapter summarizes the state of the art in control, planning, and estimation for agile
quadrotor flight. It also indicates how the work of this thesis relates to and improves on
state-of-the-art methods.
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Figure 1.4: When flying complex agile maneuvers through structured or unstructured environ-
ments, accurate control, reactive replanning, and versatile objective descriptions are required.

1.2.1 Control

As most aerial (and ground) vehicles, quadrotors are highly unstable systems with a
cascade of non-linear underactuated dynamics. Feedback control is required to stabilize
such systems on static or along time-varying references. To guarantee stability at the limit
of the systems capabilities, the control architecture must be capable to exploit the full non-
linear system and respect actuation limits. On the other hand, to react to disturbances,
changes in the environment, or new observations, the control architecture must adapt
and optionally replan with minimal latency. There exists a variety of approaches which
can be split in three paradigms: cascaded geometric control, linear-quadratic regulator,
and model-predictive control. The following paragraphs will establish the related state of
the art by going bottom-up through those three categories.

Geometric Control Following a bottom-up approach, early research first considered
the stabilization of the quadrotor’s attitude dynamics [27, 28] and later on extended
to full state control [29]. Preceding approaches exploit the time-scale separation, and
differential flatness of these systems [150, 141]. They rely heavily on cascaded control
schemes [95, 149, 58] and decouple the rotational and translational dynamics via a
geometric tracking controller as described in [122, 149]. Often used in conjunction with
analytic trajectory planning [149, 160], these approaches are computationally extremely
efficient. However, geometric approaches can only incorporate severly simplified actuation
constraints, requiring them to stay within conservative margins from the performance
limits. Furthermore, they are based on momentary state feedback without any predicitve
capabilities to anticipate upcoming flight state changes, feasibility violations, or non-linear
system dynamics.

Linear-Quadratic Regulators Based on Kalman’s introduction of the linear-quadratic
regulator [107], first approaches to optimal control for quadrotors linearized the system at
a given stable time-invariant state [195] or use a precomputed library of state-dependent
LQR gains [194]. However, these approaches cannot adjust to the full state space, time-
varying state or input costs, non-linear dynamics, or changing system parameters at
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execution time. Moreover, they often separate orientation and position control, similarly to
the aforementioned geometric control. On quadrotors, this implies that direct control over
the attitude itself is lost and the demanded acceleration is subject to several limitations
in change rate, magnitude, and direction.

Paper H proposes a unified LQR for the rotational and translational quadrotor subsystem
by relinearizing the system at the current state and providing time-varying optimal LQR
gains for compute-constrained platforms.

Model-Predictive Control However, all approaches using LQR suffer from two
fundamental problems: they neither respect any state or input constraints nor predict
the non-linear state evolution. Model-predictive control [193] is based on minimizing a
quadratic cost over a receding finite horizon subject to the robot’s system dynamics as
well as state and input constraints. The advantages of MPC are many: the system is
linearized around each predicted time point, actuator constraints can be accounted for or
even compensated, and cost functions can not only include system states and inputs but
also employ alternative measures defining a task or objective. On the other hand, MPC
is computationally much more demanding than geometric or LQR control, since it relies
on repeatedly solving a constrained non-linear optimization problem spanning multiple
timestep integrations of the dynamic system. Therefore, modern approaches apply a
real-time iteration scheme [52, 99, 253], updating control inputs and initial state between
each iteration of the numerical solution process, instead of using the result only after
convergence is reached. The intention behind this scheme is that the iterations converge
faster than the systems states change, where the problems contractivity has been proven
in [52] and the stability of the approach is shown for non-linear constrained systems in
[253].

For the specific case of quadrotor control, early works on MPC decouple the translational
and rotational state space, similar to previous geometric and LQR control, to simplify the
problem and computational requirements [191, 109, 252, 210], which, while suboptimal,
proved feasibility. Following the early success, non-linear methods have been established
[16, 108, 169, 36, 171] and demonstrated superior performance. However, all approaches
approximate, simplify, or split the dynamic system to make the computation tractable
onboard the quadrotor, or run offboard.

Based on the previous work in quadrotor control [72, 59], Paper B proposes a complete
open-source control architecture with a non-linear model-predictive control approach
running onboard and including system dynamics and constraints down to single-rotor
thrusts for multiple platforms and tasks. This architecture allows accurate tracking of
highly-agile maneuvers and was used to execute the trajectories from Paper A, and led
the foundation of my further collaborative work in [239, 19, 227, 197].
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Perception-Action Coupling All the aforementioned works advanced the field in
providing novel, more accurate, and versatile control methods. However, none of those
works account for the fact that mobile robots directly affect their sensor measurements
through their egomotion. This perception-action-coupling implies that the measurements
and their quality are affected by the robot’s actions and can therefore be controlled.
Most approaches to MPC use state and input, waypoint, or analytical spatial references
to define their objectives. However, analytical expressions of sensor models allows one
to include them in the optimization and compromise between action and perception
objectives.

Especially on aerial robots using visual and inertial sensing modalities, egomotion can
lead to motion blur or adversely affected tracking. There exist a handful of approaches to
planning and control that include certain aspects of the perception system.

These systems are either based on information gain [41, 77], reprojection and field-of-view
limitations [215, 223, 183, 188], or view-point optimization for cinematography [164,
165]. However, while [183, 215] are pure offline planning approaches and incapable of
running in real time for replanning, [223, 41, 77] do not account for the system dynamics
and underactuation of quadrotors, and [188] neglects reprojection velocity and therefore
motion blur.

Paper G improves on these works by proposing an MPC approach, which includes a
pinhole camera model to optimize perception objectives such as reprojection of a point-
of-interest into the camera frame. It achieves this within a real-time control framework,
which optimizes both the translational and rotational trajectory, and significantly supports
visual tracking systems in difficult scenarios.

1.2.2 Planning

If a quadrotor’s task consists of visiting multiple waypoints (delivery and transportation
[192], inspection, drone racing [153, 38, 140]), doing so in minimal time is often desired,
and, in the context of search and rescue or drone racing, even the ultimate goal. For simple
point-mass systems, time-optimal trajectories can be computed in closed-form, resulting
in bang-bang trajectories [121, 186]. However, quadrotors are underactuated systems [29,
141] introducing a coupling in the achievable linear and rotational accelerations, which
renders time-optimal planning extremely challenging.

Two common approaches for planning quadrotor trajectories exist, continuous-time
polynomials and discrete-time state-space representations. Polynomial formulations [141,
149, 159] exploit the quadrotor’s differential-flatness with high computational efficiency.
However, the smoothness of those polynomials limits the rate of state or input changes
and only reaches the input limits for infinitesimal short durations or constantly for
the entire trajectory time, rendering them time-suboptimal. On the other hand, time-
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discretized trajectories can be found using search and sampling-based methods [245,
4, 127, 258] or optimization-based methods [90, 85, 12, 183]. Unfortunately, sampling
the 4-dimensional continuous input space over many discrete time steps with sufficient
resolution is computationally intractable. Because of this, prior work [245, 4, 127, 258]
restores to point-mass, polynomial, or differential-flatness approximations, and therefore
does not handle realistic actuator constraints.

Therefore, planning time-discretized trajectories with optimization-based methods is
the only viable solution in the short-medium term. For a time-optimal solution, the
trajectory time is part of the optimization variables and is the sole term in the cost
function. However, if multiple waypoints must be passed, these must be allocated as
constraints to specific nodes on the trajectory. This time allocation is a priori unknown
since the time spent between any two waypoints is unknown, which renders traditional
discretized state space formulations ineffective for time-optimal trajectory generation.

The two earlier works [94, 131] extend the bang-bang approach but are restricted to
2-dimensional maneuvers. Another approach is taken in [222], where a change of variables
along an analytic reference path is used, but the platform limits are simplified to collective
thrust and bodyrates, neglecting realistic actuator saturation. A completely different
approach is followed in [204], where the segment times of a polynomial trajectory are
refined based on learning a Gaussian Classification model predicting feasibility. However,
this approach is still constrained to polynomials and only refines the execution speed of a
predefined trajectory rather than modifying the trajectory itself.

To overcome the limitations of previous works, Paper A investigates this problem and
provides a solution that allows simultaneously optimizing the trajectory and waypoint
allocation in a given sequence, exploiting the full actuator potential of a quadrotor. It
presents a novel formulation based on a progress measure for each waypoint along the
trajectory, indicating completion of a waypoint together with a complementary progress
constraint [42] that allows completion only in proximity to a waypoint.

1.2.3 Estimation

Visual Inertial Odometry Recent advances in robot perception have led to several
visual-inertial odometry (VIO) systems becoming more robust and accessible solutions
for state estimation and navigation, such as [157, 123, 162, 25, 56, 241, 128, 76, 189, 48,
126, 225].

The approaches typically consist of a frontend responsible for visual measurement extrac-
tion and a backend responsible for pose estimation. There exist two common approaches
for the backend: filtering and sliding-window estimation. Filter-based approaches such
as [157, 25, 128, 76] are typically implemented as extended Kalman filter and provide
high robustness at low computational costs. On the other hand, sliding-window-based
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approaches like [123, 189, 126, 225] can achieve higher accuracy and more versatile
measurement models but also incur far higher computational costs. These approaches
commonly describe and interprete the underlying estimation problem as a factor-graph
[46] to retrieve a maximum-a-posteriori estimate, which boils down to solving a non-linear
least-squares problem under the typically assumption of Gaussian noise distributions.
To render the resulting non-linear least-squares optimization problem computationally
tractable, many approaches employ IMU preintegration, first proposed in [138] to avoid
repeated integration of the state-dependent IMU measurements, and later modified in
[74] to address the manifold structure of the rotation group.

Meanwhile, the frontend is responsible for providing feature tracks that can be used
as visual measurement residuals in the backend. Most pipelines use Harris [91], Shi-
Tomasi [205], or FAST features [200] for feature tracking, and ORB [202], SIFT [135],
or SURF [20] as descriptors. There also exist GPU-accelerated implementations within
OpenCV [30] and ArrayFire [249]. However, neither of them guarantees spatial feature
distribution. The reason why it is interesting to have fast implementations is the fact that
feature tracking and detection profits in accuracy and robustness if the changes between
subsequent images are small. Given that the robot’s egomotion can desirably be rather
fast, high framerates are the only remaining option to reduce apparent motion, which
also implies that the frontend (and optionally the backend) have to run at a high rate
with low latency. Additionally, modern image sensors can provide high light sensitivity,
allowing for short exposure times, which lowers motion blur and benefits high frame rates.

However, state-of-the-art implementations do not yet provide solutions to deal with high
frame rates on resource-constrained platforms. Therefore, Paper D aims at providing
exactly this capability to modern embedded robotic compute platforms with integrated
small but efficient GPUs. It achieves more than 1000Hz feature tracking and enables
future applications in fast and agile flight scenarios.

Additionally, Paper H, G, F, C, and B make use of state-of-the-art VIO implementations.

Disturbance Force Estimation While the aforementioned approaches to visual-
inertial odometry enable autonomous navigation, they all neglect the robot’s dynamics
and therefore cannot sense external forces or disturbances and do not consider the
fundamental distinction between the desired motion and unwanted perturbations. Adding
the system dynamics to a VIO system (i)) allows the perception of an external force
acting on a robot, and (ii)) adds information to the estimation problem, resulting in
increased accuracy.

There are two scenarios in which one might be interested in estimating external forces:
model identification and interaction with the environment. Existing approaches typically
use an estimator loosely-coupled with an odometry system [237, 250, 203, 145, 11,
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231], introducing latency, computational overhead, and neglecting correlation among the
estimated variables and their noise characteristics.

Previous approaches on external force estimation can be split into two groups: determinis-
tic and probabilistic. Deterministic approaches estimate external force by subtracting the
collective thrust from the inertial measurements [237] or employ decoupled estimators [250,
203], but fail to correctly account for actuation and measurement noise and bias. Proba-
bilistic approaches employ loosely-coupled filters [11, 1, 145, 231] but neglect correlations
between all state variables and introduce latency and computational overhead.

On the other hand, several approaches have tried to integrate the robot’s system dynamics
into state estimation but had moderate success. [9] combined the idea of incorporating
dynamic factors for localization of UAVs from [230] with the preintegration scheme from
[74] to develop a model-based visual-inertial state estimator but without considering
external forces. Their implementation showed improved robustness, especially in slow-
speed flights when accelerometer measurements have a low signal-to-noise ratio. But, as
shown in [1] this approach tends to wrongly adjust the IMU biases under the presence
of wind and external forces, and therefore only works in a disturbance-free environment,
as confirmed by the authors in [9]. Following a completely different approach, [117]
proposed to use Dynamic Differential Programming to estimate the state, parameters,
and disturbances (forces) in a synthetic planar motion example, assuming perfect data
association, which did not translate to real-world applications.

Differently from [117], Paper E extends an optimization-based VIO framework with motion
factors to simultaneously estimate state and external force in real time on real-world
data. Those external force estimates can be used to detect and control interactions or
measure unmodelled (residual) dynamics. The latter is especially interesting for model-
based control methods such as MPC since it allows to measure the forces resulting from
unmodeled effects. Models can then be refined by regressing or validating new model
hypotheses or reacting against the measured disturbances. As shown in some of my
collaborative work, such model adaptions can include deterministic, probabilistic [239], or
even learned [19] representations.

1.2.4 Drone Racing

Drone racing requires fast navigation through a series of waypoints given by gates. To
complete and win a race, the navigation system must achieve two performance measures:
reliable race completion without crashing and the fastest laptime. The first measure
requires robustness and precision when passing the gates, relying on accurate localization
relative to the gates. The latter goal of achieving the best laptime can be solved by
finding the time-optimal trajectory, which has already been addressed in Section 1.2.2
and an offline solution is presented in Paper A. What remains are the questions of
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how to do accurate gate-relative localization and online trajectory (re-)planning on
compute-constrained platforms.

Traditional approaches to aerial autonomous navigation build on visual-inertial odometry
as described in Section 1.2.3. While these methods can be used to perform visual teach and
repeat as in [64], they assume a static world and accurate pose estimation: assumptions
that are commonly violated in the real world. Furthermore, the performance of these
algorithms significantly degrades during agile and high-speed flight as encountered in
drone racing. The drone’s high translational and rotational velocities cause large optic
flow, making robust feature detection and tracking over sequential images difficult and
thus causing substantial drift in the VIO state estimate [47].

In [124], a handcrafted process is used to guide the drone towards the visible gate.
While the approach is computationally very lightweight, it struggles when multiple
gates are visible and does not allow more sophisticated planning and control algorithms.
However, recent advances in deep-learning enabled alternative approaches to autonomous
navigations, which typically predict actions directly from images. Output representations
range from predicting discrete navigation commands (classification in action space) [114,
87, 134] to direct regression of control signals [161], or regressing cost functions [54].

Another line of work proposed intermediate representations as in [103, 111]. While [104]
uses line-of-sight tracking and therefore always needs to see the next gate, [111] directly
regressed high-level steering data from images. As an advantage, the latter method can
exploit track-specific context but also requires a large amount of track-specific training
data, rendering it difficult to deploy in the real world.

I addressed these shortcomings in a seminal collaborative work on drone racing in
Paper F, which won first place in the "2018 IROS Autonomous Drone Racing Challenge".
As opposed to existing work, our approach combines an intermediate measurement
representation in the form of learned gate pose detections with an apriori known but
inaccurate gate map and a VIO/EKF/MPC combination. It operates reliably even when
no gate is in sight while eliminating the need to retrain the perception system for every
new track, enabling rapid deployment on complex tracks. However, the perception system
does not perform well when multiple gates are visible, as is frequently the case for drone
racing, and the navigation strategy had no notion of even approximately time-optimal
planning.

Assuming knowledge of the platform state and the environment, there exist many ap-
proaches which can reliably generate feasible trajectories with high-efficiency [149, 160].
Other approaches additionally incorporate obstacle avoidance [258, 84] or perception con-
straints [59, 221]. But for time-optimal planning, there exists only a handful of approaches
[94, 131, 204] including my work in Paper A. However, while [94, 131] are limited to 2D
scenarios and only find trajectories between two given states, [204] requires simulation
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Figure 1.5: Visualization of the gate detection procedure in Paper C. Left: the capture image.
Mid-left: detected corners with a few possible corner connections visualized as yellow lines.
Mid-right: part-affinity fields to resolve matching corner connections. Right: final detections
visualized on the original image.

and real-world data obtained on the track, and the method of A is not applicable due to
computational constraints.

To address the shortcoming of multiple gate observations and efficient onboard planning
for drone racing, my collaborative work in Paper C improves over Paper F with a new
measurement modality capable of detecting multiple partially visible gates (Figure 1.5),
and an approximately time-optimal planning algorithm.
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2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in the
appendix. It further highlights the connections between the individual results and refers
to related work and video contributions.

In total, this research has been published with my first-authorship in three journal
publications (two in Science Robotics, one in Springer: Autonomous Robots) and three
peer-reviewed conference publications, and with my co-authorship in five peer-review
conference publications and four journal publications (two in the IEEE Transactions on
Robotics and two in the Robotics Automation Letters (RA-L)). A complete list of all
publications can be found on Page ix.
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These works led to several research awards and open-source software.

Awards:

• Robotics: Science and Systems (RSS) 2020, Best System Paper Award for
Paper C and invitation to publish in Springer: Autonomous Robots.

• AlphaPilot Challenge, 2019, organized by Lockheed Martin and the Drone Racing
League, 2nd Place out of 430 participants worldwide with the approach
presented in Paper C.

• IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2018 in the Autonomous Drone Racing (ADR) challenge, Winner 1st Place with
the approach presented in Paper F.

• Robotics: Science and Systems (RSS) 2017, Best Student Paper Award Finalist
with my paper on "Fast Trajectory Optimization for Agile Quadrotor Maneuvers
with a Cable-Suspended Payload" [70].

Software:

• Agilicious Flightstack: Paper B
available at https:agilicious.dev

• Time-Optimal Planning: Paper A
available at https://github.com/uzh-rpg/rpg_time_optimal

• Perception-Aware MPC: Paper G
available at https://github.com/uzh-rpg/rpg_mpc

• Visual-Inertial Model-based Odometry: Paper E
available at https://github.com/uzh-rpg/vimo

• GPU-Accelerated Corner Tracker: Paper D
available at https://github.com/uzh-rpg/vilib
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2.1 Time-Optimal Planning for Quadrotors

2.1 Time-Optimal Planning for Quadrotors

In the first part of this thesis, I consider the problem of generating time-optimal trajectories
for quadrotor flight. Fast and robust flight requires the ability to generate trajectories
that exploit the full actuation space of the quadrotor without exceeding actuation limits.
Therefore, it is important to understand how actuation limits restrict and influence the
trajectory and then take advantage of a methodology that can handle and exploit them. A
common task in aerial navigation is the flight through a series of waypoints, as necessary
in inspection, observation, delivery, and drone racing. This task sets the context for the
research question of "What does it mean for a quadrotor to fly agile and how can we
generate fast flight paths?".

One fundamental property of quadrotors is their underactuated system dynamics. Since
their four rotors lie in a single plane, they generate torque in all three spatial dimensions
but collective thrust only in a single direction. In order to control translational acceleration,
velocity, and position, the vehicle has to change its orientation. This renders the system
differentially-flat, where all states and inputs can be expressed through a differentiable
formulation of the position and yaw subspace, as exploited in many works so far [149,
159, 58]. On the other hand, the quadrotor’s underactuation also couples the extrema of
linear and angular acceleration through the actuator limits. This poses the question of if
and how we can find the optimal trade-off between linear and angular acceleration.

The works [149, 159, 58] exploit the differential-flatness to describe quadrotor trajecto-
ries as four individual polynomials in position and yaw parametrized by time. Those
polynomials are extremely efficient to compute but bear some disadvantages. Since the
polynomials represent decoupled axes of a non-linear system, it is difficult to directly relate
them to the actual single-rotor thrusts and renders application of actuator constraints
extremely challenging. In fact, the aforementioned works vastly relax the real single-rotor
constraints to higher-level collective-thrust and bodyrate constraints, which either leads
to overly conservative or infeasible solutions. Another challenge is presented by the fact
that polynomials only reach extrema in points or constantly but can’t reach an extremum
for a partial duration, limiting the solution-space to provable sub-optimality.

My work is therefore focused on discretized trajectories combined with numerical opti-
mization. Contrary to polynomials, discretized trajectories allow for both arbitrary state
and input changes between individual time steps and enforcing realistic system dynamics
on any desired level. However, they also bear a challenge: to formulate the task of passing
through multiple waypoints, they must be assigned to one or a subset of the discretized
states. Since for time-optimal planning, the actual time at which a waypoint is passed
is a priori unknown, this assignment is not possible, and a different method to enforce
waypoint passing without time-allocation needs to be researched.

The following work proposes a solution to these challenges.
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Figure 2.1: This time-optimal flight path was computed using the proposed complementary
progress constraints (CPC) and outperforms expert human piots.

2.1.1 Paper A: Time-Optimal Planning for Quadrotor Waypoint Flight

Philipp Foehn, Angel Romero, and Davide Scaramuzza. “Time-optimal planning for quadrotor
waypoint flight”. In: Science Robotics 6.56 (2021). doi: 10.1126/scirobotics.abh1221. url:
https://robotics.sciencemag.org/content/6/56/eabh1221

In this work, I propose a novel method for time-optimal waypoint flight (see Figure 2.1)
for quadrotors at their actuation limit. For the first time, this method is able to generate
trajectories that beat expert human drone racing pilots. Due to the suboptimality of
polynomials, my method relies on numerical optimization with a discretized trajectory
formulation, including the system dynamics on a single-rotor-thrust level through a
multiple-shooting scheme. This allows to account for realistic dynamics and actuator
constraints, as opposed to approximations used in other works to date [94, 131, 222, 204],
but requires waypoints to be allocated as costs or constraints at specific discrete times.
To generate truly time-optimal trajectories, I propose a solution to the time allocation
problem by introducing a formulation of progress along the trajectory, together with a
complementary progress constraint. More specifically, I formulate two factors that must
complement each other, where, in my case, one factor is the completion of a waypoint
(progress), while the other factor is the local proximity to a waypoint. This enables the
simultaneous optimization of the time-allocation and the trajectory itself. I compare my
method against related approaches [94, 131] and validate it in real-world flights with the
control strategies developed in Section 2.2, where I outperform human expert drone pilots
in a drone-racing task. Finally, I discuss practical deployment limitations, which are
further addressed in the collaborative work in 2.2.4, the sub-optimality of polynomials,
and the convexity and convergence properties of my formulation, supported by a multitude
of simulation experiments.

My specific contributions to this work include the complete problem formulation, the
derivation of the proposed complementary progress constraints, as well as the simulation
and real-world experiment design, execution, and evaluation.
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2.1 Time-Optimal Planning for Quadrotors

Related Software

(S1) https://github.com/uzh-rpg/rpg_time_optimal

Related Video

(V1) https://youtu.be/ZPI8U1uSJUs
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2.2 Optimal Control for Quadrotors

Classic control strategies rely on multiple cascaded feedback loops, each with its own set of
assumptions, approximations, and parameters. In the case of a non-linear or time-varying
system, this necessitates extremely conservative performance for robustness or jeopardizes
the closed-loop system stability. However, to reach a level of robustness and agility that
meets the modern requirements for safety and profitability, navigation systems must be
capable of exploiting the non-linear system dynamics while respecting the actuator limits
to ensure stability and feasibility and dealing with complex task formulations. Therefore,
this part of the thesis will answer the research question of "How can we simultaneously
achieve robust, versatile, and agile control for fast and reliable mission execution with
drones?" and "Is it possible to exploit the coupling between action and perception on
mobile robots?".

To achieve this, I will investigate and leverage model-based control using numerical
optimization and apply them to the quadrotor system in a three-step approach: i)
Paper H first improves on cascaded control by proposing a quadratic cost formulation
and an approximation of the non-linear system through a time-varying linear-quadratic
regulator; ii) Paper G then advances to non-linear model-predictive control to accurately
represent the non-linear dynamics over a moving horizon, account for simplified actuation
limits, and include perception models; iii) Paper B finally refines the model-fidelity and
includes the real single-rotor actuation constraints, and proposes a complete software and
hardware system for agile and robust flight. Based on these three contributions, I further
developed multiple improvements in collaboration with my colleagues, ranging from
rotor-failure handling over comparative studies to model-predictive contouring control,
all summarized in 2.2.4.
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2.2.1 Paper H: Onboard State Dependent LQR for Agile Quadrotors

Philipp Foehn and Davide Scaramuzza. “Onboard State Dependent LQR for Agile Quadrotors”.
In: IEEE Int. Conf. Robot. Autom. (ICRA). 2018. doi: 10.1109/ICRA.2018.8460885

This first contribution acts as a preliminary investigation of the advantages of task
description and tuning using quadratic state and inputs costs, together with an improved
approximation of the non-linear system over traditional cascaded strategies. I propose
an LQR controller, which: (i)) is linearized depending on the quadrotor’s state; (ii))
unifies the control of rotational and translational states; (iii)) handles time-varying
system dynamics and control parameters. I verify the approach in four experiments: (i))
controlling at hover state with large disturbances; (ii)) tracking along a trajectory; (iii))
tracking along an infeasible trajectory; (iv)) tracking along a trajectory with disturbances.
All experiments were done using only onboard state estimation and LQR computation,
and show good tracking performance, versatile deployment, and are computationally
easily tractable. This work laid the foundation for the following contributions, which
advance this preliminary investigation to a non-linear model-predictive control strategy.

This work consist purely of my own contributions including the methodology and experi-
ments.

Related Videos

(V2) https://youtu.be/8OVsJNgNfa0

2.2.2 Paper G: PAMPC: Perception-Aware Model Predictive Control
for Quadrotors

Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. “PAMPC: Perception-aware
model predictive control for quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS).
2018

To fully exploit the non-linear dynamics and incorporate the actuation constraints of
a quadrotor, this work advances from the simplified infinite-time LQR formulation of
Paper H to a moving-horizon model-predictive control formulation. Furthermore, we also
leverage the MPC’s capabilities to exploit the coupling between action and perception
objectives of a quadrotor vehicle to allow for robust and reliable sensing. Considering
both perception and action objectives for motion planning and control is challenging due
to the possible conflicts arising from their respective requirements. For example, for a
quadrotor to track a reference trajectory, it needs to rotate to align its thrust with the
direction of the desired acceleration. However, the perception objective might require
minimizing such rotation to maximize the visibility of a point of interest. MPC is not only
capable of accounting for the non-linear system dynamics and actuation constraints but
through its quadratic cost formulate also enables the inclusion of such perception costs
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and trading-off multiple objectives. The result is a perception-aware model predictive
control framework, which works in a receding-horizon fashion by iteratively solving a
non-linear optimization problem. It is capable of running in real-time, fully onboard a
lightweight, small-scale quadrotor using a low-power ARM computer, together with a
visual-inertial odometry pipeline. The approach is validated in experiments demonstrating
(i)) the conflict between perception and action objectives, and (ii)) improved behavior
in extremely challenging lighting conditions. This approach was also used in the drone
racing demonstrator Section 2.4.1, where it enabled both agile flight and focusing on
specific perception targets. However, this approach still uses a separate low-level controller
and therefore approximates the actuation constraints as maximal collective thrust and
bodyrates. This is a simplification of the real single-rotor thrust constraints, which can
still lead to reduced performance in agile maneuvers, and is therefore alleviated in the
next contribution.

My contributions to this work include the formulation and design of the MPC, its
implementation, as well as the experimental evaluation. The idea for the problem, as well
as the derivation of the perception model was done together with my coauthor Davide
Falanga.

Related Software

(S2) https://github.com/uzh-rpg/rpg_quadrotor_mpc

Related Video

(V3) https://youtu.be/9vaj829vE18

2.2.3 Paper B: Agilicious: Open-Source and Open-Hardware Agile
Quadrotor for Vision-Based Flight

Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld,
Thomas Laengle, Yunlong Song, Antonio Loquercio, and Davide Scaramuzza. “Agilicious: Open-
Source and Open-Hardware Agile Quadrotor for Vision-Based Flight”. In: Science Robotics
(2021). under review

Based on the insights from previous contributions in Paper G and the demonstrator in
Paper C, it became clear that there is a necessity for a streamlined control pipeline, a
unified hardware platform, and an NMPC approach with higher model-fidelity. Therefore
the contribution in this paper is threefold: i) I extend the previous NMPC formulation
from Paper G by changing the actuation constraint to the true single-rotor thrust
constraints; ii) I propose a software architecture and a complete hardware design that
is targeted at agile flight, which allows the seamless transition between different control
architectures, platforms, and even deployment in multiple simulations and the real world;
and iii) we make it available open-source and open-hardware to further support the
community working on (agile) quadrotor flight. Figure 2.2 shows a condensed overview of
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Simulation
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Figure 2.2: An overview of the software and hardware in my open-source flight stack called
Agilicious. It provides all required resources to start research and development on state-of-the-art
agile aerial autonomy, including a versatile control pipeline allowing fast prototyping and a
hardware platform capable of aggressive flight maneuvers.
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the open-source soft- and hardware of my Agilicious flight stack.

The NMPC proposed in this work finally accounts for the non-linear system dynamics
down to the level of rotational and translational accelerations, incorporates single-rotor
thrust constraints, allows flexible task formulations including stable setpoint references,
polynomial and sampled time-varying reference, and even approximative tracking of
infeasible references, all while running onboard the proposed hardware platform at more
than 200Hz. Furthermore, even though it uses the single-rotor thrusts as an input
modality, it can also be used for bodyrate and collective thrust commands or allows to
be extended with further low-level controllers.

My contributions to this paper include the complete software architecture, implementation
of multiple software modules such as the MPC and estimators, software utilities, as
well as the evaluations presented in the experiment section. Furthermore, I helped in
the development of the low-level flight controller, designing the hardware concept and
evaluating hardware components.

This contribution laid the foundation for countless further studies evaluating and improving
on the proposed control architecture. All studies that I have been collaboratively involved
in are listed and explained in the following Section 2.2.4.

Related Software

(S3) https://agilicious.dev and https://github.com/uzh-rpg/agilicious
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2.2.4 Additional Contributions

In the following works, my contributions are limitted to the design of the discussed
MPC implementations together with my coauthors, as well as software architecture
contributions in Paper B, and help with the design and evaluation of experiments.

A Comparative Study of non-linear MPC and Differential-Flatness-Based
Control for Quadrotor Agile Flight

Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and Davide Scaramuzza. “A Com-
parative Study of Nonlinear MPC and Differential-Flatness-Based Control for Quadrotor Agile
Flight”. In: IEEE Trans. Robot. (2021). arXiv: 2011.11104 [cs.RO]

In this collaborative study we compare the non-linear model-predictive control (NMPC)
from Paper B and differential-flatness-based control (DFBC) and demonstrate under which
conditions NMPC is superior. The study evaluates both methods with and without an
additional low-level controller using incremental non-linear dynamic inversion (INDI). It
presents both simulation and real-world comparisons, ablates the performance on feasible
and infeasible trajectories, and under varying levels of latency and model mismatch. We
conclude that NMPC in combination with a fast low-level controller and given accurate
models and low-latency systems is superior in all practical tasks. However, we also find
that latency and large model mismatch can have a higher impact on NMPC methods
than on DFBC.

Related Video

(V4) https://youtu.be/XpuRpKHp_Bk

Model Predictive Contouring Control for Near-Time-Optimal Quadrotor
Flight

Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. “Model Predictive Contouring
Control for Near-Time-Optimal Quadrotor Flight”. In: IEEE Trans. Robot. (2021). arXiv:
2108.13205 [cs.RO]

In this work, we again consider the task of time-optimal flight through multiple waypoints
or along a given reference. While my contributed Paper A is capable of producing truly
time-optimal trajectories, it requires computation times of up to an hour. Furthermore,
the precomputed trajectories are only practically feasible if the platform has some margin
for control in the actuator constraints to counteract disturbances. This implies that the
method is not well suited for dynamic, unknown, or uncertain environments. To deal
with these limitations, we develop a method that reaches similar performance compared
to Paper A but does not require any compute-intensive planning. This is achieved by
formulating a model-predictive contouring control (MPCC) problem. Different from
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MPC which tracks a predefined time-based trajectory, MPCC tracks a spatial path and
maximizes the progress along this path online. Through this formulation, it is possible
to simultaneously maximize the progress and therefore fly as fast as possible while also
accounting for the dynamics and actuation constraints. Furthermore, it is more robust to
disturbances since it does not track fixed time-based reference. We show how this control
strategy approximates the time-optimal solutions from Paper A and how it can be used
to achieve better performance in real-world deployment.

Related Video

(V5) https://youtu.be/mHDQcckqdg4

Nonlinear MPC for Quadrotor Fault-Tolerant Control

Fang Nan, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. “Nonlinear MPC for Quadrotor
Fault-Tolerant Control”. In: IEEE Robot. Autom. Lett. 2022

In this collaborative publication, we extend the capabilities of the MPC in Paper B
to a fault-tolerant control formulation. This work is based on the problem implied by
the unstable and underactuated dynamics of quadrotors in combination with a rotor
failure. To address this problem, we propose a fault-tolerant controller using the NMPC
to stabilize and control a quadrotor subjected to the complete failure of a single rotor.
Differently from existing works that either rely on linear assumptions or resort to cascaded
structures neglecting input constraints in the outer-loop, our method leverages full non-
linear dynamics of the damaged quadrotor and considers the thrust constraint of each
rotor. It can track agile reference trajectories with and without rotor failure, transition
into and from failure states, and even recover from extreme failure states, such as up-
side-down and agile maneuvers. Our approach was verified in extensive simulations and
real-world experiments, which demonstrates that the proposed method can effectively
recover the damaged quadrotor even if the failure occurs during aggressive maneuvers,
such as flipping and tracking agile trajectories. Therefore it significantly contributes to
the safety of future systems and allows to avoid catastrophic damage while not restricting
the flight envelope, paving the way for the deployment of agile navigation approaches.

Related Video

(V6) https://youtu.be/Cn_836XGEnU

Performance, Precision, and Payloads: Adaptive non-linear MPC for Quadro-
tors

Drew Hanover, Elia Kaufmann, Philipp Foehn, and Davide Scaramuzza. “Performance, Precision,
and Payloads: Adaptive Optimal Control for Quadrotors Under Uncertainty”. In: IEEE Robot.
Autom. Lett. 2022. doi: 10.1109/LRA.2021.3131690
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This collaborative work addresses the problem of model-mismatch when deploying MPC
on real systems. While the control strategy developed in the context of Paper B exploits
its predictive nature to accurately incorporate non-linear models and actuator constraints,
it suffers from performance degradation if there is a significant mismatch between the
modelled and the real-world dynamics. Therefore, we propose L1-NMPC, a novel hybrid
adaptive NMPC to learn model uncertainties online and immediately compensate for
them, drastically improving performance over the non-adaptive baseline with minimal
computational overhead. Our proposed architecture generalizes to many different en-
vironments from which we evaluate wind, unknown payloads, and highly agile flight
conditions. The proposed method demonstrates improved tracking performance while
providing immense flexibility and robustness.

Related Video

(V7) https://youtu.be/8oB1rG5iYc4
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2.3 State-Estimation and Modelling for Quadrotors

The previous contributions all considered the planning and control problem of a quadrotor
assuming accurate dynamic models. In reality, however, accurate models are difficult
to acquire and or even impossible to represent given the aerodynamic (and partially
chaotic) effects on aerial vehicles. Therefore, it is important to identify the predictable
contributions of such high-complexity models and compensate or suppress disturbances.
This is possible in two steps: i) first it is necessary to be able to establish an estimate or
measure of the residual (unmodelled) dynamics, ii) then it is possible to create a model
that captures those dynamics and enables improved control performance.

To do so, this chapter first considers the research question of "Is it possible to exploit
the coupling between action and perception on mobile robots?" from the perspective of
state estimation for external force detection (Figure 2.3), and then extends to possible
approaches to model external forces caused by aerodynamic effects.

In fact, given a model of the vehicle, we can include its dynamics into a visual-inertial
odometry (VIO) pipeline and simultaneously estimate the system state and the external
or residual forces. For this, I propose a sliding-window-based VIO backend, which includes
the modelled actuated dynamics into the perception system, followed by a proposal of a
fast feature detection frontend to help visual-inertial odometry approaches to transition
into the regime of fast and agile flight.

Finally, in collaborative contributions, two models capturing aerodynamic effects are
proposed, one focused on accurate simulation (Section 2.3.3), completed by a second one
focused on realtime inference in an MPC framework (Section 2.3.3).

I
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vision factor

I inertial factor

vision landmark

D dynamic factor

force factorF
D
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V V

discrepancy

Figure 2.3: A simplified illustration of a factor graph with included dynamics and residual
terms. Different from classic VIO approaches, the graph does not only include visual (V) and
inertial (I) factors, but also the model dynamics (D) and the residual forces (F) from unmodelled
effects such as aerodynamics, interaction, or disturbances.
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2.3.1 Paper E: VIMO: Simultaneous Visual Inertial Model-based Odom-
etry and Force Estimation

Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. “VIMO: Simultaneous
Visual Inertial Model-based Odometry and Force Estimation”. In: Robotics: Science and Systems
(RSS). 2019

In this paper, I present an approach to visual-inertial odometry capable of exploiting the
robot’s dynamics and known actuation inputs, and differentiating between desired motion
due to actuation and unwanted perturbation due to external or aerodynamic force. For
many robotic applications, such as agile flight, it is often essential to identify or even model
the external force acting on the system due to e.g. interactions or unmodelled dynamics.
My approach enables this by simultaneously estimating the motion and the effects of
external forces or residual dynamics. I propose a relative motion constraint combining
the robot’s dynamics and the external force in a preintegrated residual, resulting in a
tightly-coupled, sliding-window estimator exploiting all correlations among all variables.
The results show that my approach increases the accuracy of the estimator and provides
external force estimates at no extra computational cost. The accuracy of the force
estimates is validated by measuring the groundtruth force of an interaction with a loadcell
sensor. This force estimate allows to identify and model the residual aerodynamic effect
allows to identify and model the residual aerodynamic effects and exploit such high-fidelity
models in simulation or MPC.

My contribution to this work includes the idea for, as well as the derivation of the
preintegrated model residual and the real-world experimental validation. Implementation
and simulation validation was mainly done by my coauthor Barza Nisar.

Related Software

(S4) https://github.com/uzh-rpg/vimo

Related Video

(V8) https://youtu.be/t2GdZZp7xQE

2.3.2 Paper D: Faster than FAST: GPU-Accelerated Frontend for High-
Speed VIO

Balazs Nagy, Philipp Foehn, and Davide Scaramuzza. “Faster than FAST: GPU-Accelerated
Frontend for High-Speed VIO”. in: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2020

To enable fast and agile flight outside of instrumented environments, mobile robots
need to be able to perform fast, robust, and precise onboard state estimation. VIO
prevails with its low cost, complementary measurement modalities, universal applicability,
and increasing maturity and robustness, but it is still computationally expensive and
introduces significant latency. The latter is especially true for aerial vehicles with size
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and weight constraints limiting the available computation power while requiring real-
time execution of the VIO and control pipeline to guarantee stable, robust, and safe
operation. Besides latency, one may also witness a disconnect between the available sensor
capabilities and the actual information processing capabilities of mobile systems. While
off-the-shelf cameras are capable of capturing images above 100fps, many algorithms and
implementations are not able to handle visual information at this rate.

Moreover, fast and agile flight introduces large apparent changes in the captured image
or even leads to motions blur. Both factors cause visual feature tracking to be less
precise and robust or even fail completely. However, modern sensors with a good
signal-to-noise ratio and high framerates allow reducing exposure time and the apparent
motion between consecutive frames, resulting in reduced motion blur a robust tracking,
respectively. By lowering the frame processing times, we can simultaneously minimize
latency and also reduce the displacement between frames due to fast motions. This paper
proposes a novel feature tracking frontend to help visual-inertial odometry approaches to
transition into the regime of fast and agile flight. This work first revisits the problem
of non-maxima suppression for feature detection, followed by proposing an enhanced
FAST feature detector specifically designed to exploit parallelization on small GPUs.
Finally, the proposed method is evaluated against other state-of-the-art CPU and GPU
implementations, where it always outperforms all of them in feature tracking and detection,
resulting in over 1000fps throughput on an embedded Jetson TX2 platform, as used in
Paper B. Additionally, this fast frontend is integrated into a VIO pipeline achieving a
metric state estimation at ∼200fps.

My contribution to this work consists of the idea and methodology for the approach
and experiment design, while implementation and validation have been executed by my
coauthor Balazs Nagy.

Related Software

(S5) https://github.com/uzh-rpg/vilib

Related Video

(V9) https://youtu.be/5Ndi9IYpI68
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Figure 2.4: A quadrotor in a high-acceleration flight maneuver through smoke to visualize
the air flow arround the vehicle. Real-world flight data can be used to estimate and model the
residual aerodynamic forces not explained by the rigid-body quadrotor dynamics.

2.3.3 Additional Contributions

The following publications include mainly the work of my coauthors which I have supper-
vised and assisted in the derivation of the methodology and the experimental validation,
as well as supported the software development within Paper B.

NeuroBEM: Hybrid Aerodynamic Quadrotor Model

Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scaramuzza. “Neu-
roBEM: Hybrid Aerodynamic Quadrotor Model”. In: RSS: Robotics, Science, and Systems
(2021)

In fact, aerodynamic forces render accurate high-speed trajectory tracking with quadro-
tors extremely challenging since they become a significant disturbance at high speeds,
introducing large positional tracking errors. Moreover, these effects are specific to the
shape and specifications of a vehicle and extremely difficult to model since they typically
range from simple linear effects to non-linear and chaotic disturbances, depending on the
relative airspeed and the vehicle’s operation point, as visualized in Figure 2.4.

In most applications, agile flight also implies fast flight at high average velocity, so
fast in fact, that classic first-principle models come to their limits, and aerodynamic
effects become the dominant model defect. Accurate modeling is needed to design robust
high-performance control systems and enable flying close to the platform’s physical
limits. Therefore, we propose a hybrid approach fusing first principles and learning to
model quadrotors and their aerodynamic effects with unprecedented accuracy. First
principles fail to capture such aerodynamic effects, rendering traditional approaches
inaccurate when used for simulation or controller tuning. Data-driven approaches try to
capture aerodynamic effects with blackbox modeling, such as neural networks; however,
they struggle to robustly generalize to arbitrary flight conditions. Our hybrid approach
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unifies and outperforms both first-principles blade-element momentum theory and learned
residual dynamics. The resulting model captures the aerodynamic thrust, torques, and
parasitic effects with high accuracy and outperforms existing models such as [58]. However,
my method is mainly targeted at simulation and does neither provide any smoothness,
continuity, nor gradients necessary to embed it in optimization-based MPC. Therefore,
the following contribution (Section 2.3.3) provides a simplified model, allowing embedding
in an MPC.

Related Software

(S6) http://rpg.ifi.uzh.ch/NeuroBEM.html

Related Video

(V10) https://youtu.be/Nze1wlfmzTQ

Data-Driven MPC for Quadrotors

Guillem Torrente, Elia Kaufmann, Philipp Foehn, and Davide Scaramuzza. “Data-driven mpc for
quadrotors”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 3769–3776

To fly at high speeds, feedback control must be able to account for these aerodynamic
effects in real-time, necessitating a modeling procedure that is both accurate and efficient
to evaluate. In this paper, we therefore present an approach to model aerodynamic effects
using Gaussian Processes, which we incorporate into our MPC to achieve efficient and
precise real-time feedback control. This allows reducing trajectory tracking errors by up
to 70% at high speeds. We verify our method by extensive comparison to a state-of-the-art
linear drag model from [58] in synthetic and real-world experiments at speeds of up to
14m/s and accelerations beyond 4g.

Related Software

(S7) https://github.com/uzh-rpg/data_driven_mpc

Related Video

(V11) https://youtu.be/FHvDghUUQtc
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2.4 Demonstrators

(a) View from the drone of Paper F (b) The drone and track of Paper C

Figure 2.5: Scenes of the two racing demonstrators. Paper F in Figure 2.5a is only able to
detect the next gate and uses the perception-aware MPC from Paper G to focus and fly through
the gates. Figure 2.5b shows the drone and track where the approach of Paper C was deployed.
This approach is capable of perceiving multiple gates at once an plan approximate time-optimal
trajectories through multiple gates ahead.

2.4 Demonstrators

The following demonstrators have been done in the context of two international drone
racing competitions, where Paper F was based on my previous contribution in Paper G,
and the challenges met in Paper C inspired the later contributions in Paper A and
Paper B.
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2.4.1 Paper F Beauty and the Beast: Optimal Methods Meet Learning
for Drone Racing

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. “Beauty and the Beast: Optimal Methods Meet Learning
for Drone Racing”. In: IEEE Int. Conf. Robot. Autom. (ICRA) (2019), pp. 690–696. doi:
10.1109/ICRA.2019.8793631. url: https://doi.org/10.1109/ICRA.2019.8793631

This demonstrator was developed in the context of the 2018 IROS Drone Racing Compe-
tition [154, 153], in which I and my team scored first place.

Autonomous drone racing requires precise and fast navigation, which is often difficult
to achieve in previously unseen and uninstrumented environments due to the drift of
onboard localization methods. Therefore, autonomous navigation algorithms so far
required a precise metric map of the environment, which is often highly impractical to
acquire. To alleviate this necessity, we propose an approach that can fly a new track in a
previously unseen environment without a precise map or expensive data collection. This
method exploits the previously contributed method in Paper G by using the perception-
aware model-predictive control to focus on the next gate known from a coarse gate
map. This allows stable perception of the next gate, an image of which is fed to a
convolutional network predicting the pose of the closest gate together with its uncertainty.
These predictions are incorporated by an extended Kalman filter to maintain optimal
maximum-a-posteriori estimates of gate locations. This allows the framework to cope
with misleading high-variance estimates that could stem from poor observability or lack of
visible gates. Given the estimated gate poses, we use the perception-aware MPC (Paper G)
to quickly and accurately navigate through the track. This is done by tracking straight
line segments between the gates, which the MPC uses to generate feasible trajectories
without the need for a higher-level planning system. We conduct extensive experiments
in the physical world, demonstrating agile and robust flight through complex and diverse
previously-unseen race tracks.

My contributions include both the Kalman filter and the MPC, whereas the learning-based
gate detection has been developed by my coauthors. The evaluation of all experiments
has been a joint effort of all authors.

Related Video

(V12) https://youtu.be/UuQvijZcUSc
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2.4 Demonstrators

2.4.2 Paper C AlphaPilot: Autonomous Drone Racing

Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus Cieslewski, Mathias Gehrig, Manasi
Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous Drone Racing”. In: Robotics:
Science and Systems (RSS) (2020). url: https://link.springer.com/article/10.1007/s11370-018-
00271-6
and
Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus Cieslewski, Mathias Gehrig, Manasi
Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous Drone Racing”. In: Autonom. Rob.
(2021). doi: 10.1007/s10514-021-10011-y

Based on the experience from Paper F we further improved our approach to drone racing
in this contribution describing our strategy for the 2019 AlphaPilot Challenge world
championship.

Contrary to the previous Paper F, which only detects the next gate, this approach makes
use of any visible gate and takes advantage of multiple, simultaneous gate detections to
compensate for drift of a VIO state estimate and build a global map of the gates. The
global map and drift-compensated state estimate allow the drone to navigate through the
racecourse even when the gates are not immediately visible and further enables to plan a
near time-optimal path through the racecourse in real-time based on approximate drone
dynamics. The proposed system has been demonstrated to successfully guide the drone
through tight race courses reaching speeds up to 8 m/s and ranked second at the 2019
AlphaPilot Challenge.

However, the proposed system also highlighted two major problems of autonomous drone
racing. First, the hardware platform was defined by the race organizer and brought some
tremendous limitations in compute resources, control architecture, and mechanical system
performance. The conclusions drawn from those limitations led to the development of a
new drone platform led by me and presented in Paper B. Second, during the development
of the planning algorithms for the 2019 AlphaPilot Challenge, it became clear that
there is a lack of time-optimal planning approaches for quadrotors and that unrealistic
approximations dominated the state-of-the-art methods. This led to further investigation
of time-optimal trajectory planning and resulted in my contributed Paper A.

My contributions to this work include the filter-based alignment of the VIO state estimate
and the map, as well as the overall system architecture, evaluation, and participation in
the 2019 AlphaPilot Challenge.

Related Videos

(V13) https://youtu.be/DGjwm5PZQT8

(V14) https://youtu.be/ZIHjswKDods
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3 Future Directions

Optimization-based techniques have proven themself to be valuable tools for research and
development, as they allow to find solutions to complex and abstract problem formulations.
The rapid groth of available compute resources together with efficient implementations
allow for unforseen performance in estimation, planning, and control tasks, revolutionizing
robotics. However, neither have we yet exploited their full potential, nor are there
known solutions to all problems faced by the research community. These methods still
rely on accurate system models and convex problem formulations. Furthermore, most
navigation systems are developed as a sequence of modules that are executed consecutively,
rather than conjointly. Additionally, these modules typically use their own specialized
measurement and data representations, and largly rely on unimodal Gaussian noise
assumptions.

These disjoint execution and separate data representations hinder many state-of-the-art
approaches from exploiting systematic (perception-action) and algorithmic (estimation,
planning, control) coupling. On the other hand, perception-action coupling can often
be expressed by combining the measurement models and the system dynamics, while
algorithmic could be achieved thanks to the similarity in structure of estimation, planning,
and control problems. Already in the 1960s, this similarities became obvious from
Kalman’s publications [107, 106], but were never explored further than the linear-quadratic-
gaussian control principle and separation theorem. Finally, convex problem formulations
and unimodal noise distributions pose a significant challenge in task and environment
modelling, e.g. when describing discrete decisions such as in obstacle avoidance or outlier
rejection.

I envision the fundamental combination of estimation, planning, and control into a unified
problem formulation as one of the most powerful concepts in the future of robotics.
Additionally, I see a clear deficit in modelling techniques for uncertainty, dynamics, tasks,
and the robot’s environment. The following sections describe what I perceive to be the
highest priority of future work.
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3.1 Transient Estimation and Control

Both, estimation and control problems can be formulated as optimizations, and in the
case of Gaussian noise assumptions often boil down to non-linear constrained least-
squares problems. The similarities become obvious once we look at the mathematical
representation of the two problems. MPC uses a discretized state space over a moving time
horizon, optimizing a quadratic cost under system dynamics and actuation constraints.
Furthermore, we can set the weigths for the quadratic cost such that they represent
the relative tolerated standard deviation, simplifying their interpretability. Meanwhile,
moving-horizon estimator (often also formulated as a pose-graph) also use a discretized
state space, over which they find the maximum-a-posteriori probability of a set of
measurements given the state space. Given Gaussian noise, this maximum-a-posteriori in
the probability corresponds to the least-squares solution weighted by the inverse of the
covariance.

Comparing the two approaches, we can see that both use discretized state spaces covering a
moving horizon as optimization parameters, and quadratic costs weighted by expectance.
The difference lies in the exact implementation of the residuals contributing to the
cost function. In the case of estimation is measurement data from the past horizon
together with its model, while in the case of control it represents the task formulation
for the future horizon, where both intersect at the present state. Therefore, unifying
these two similar structures could be as easy as concatenating them, which allows
simultaneous processing and enables tight coupling between all modelled and estimated
quantities. This enables direct incorporatioin of estimated variables such as states, but
also parameters, environment representations, or landmarks, into the control problem,
and tightly-coupled perception-action objectives, such as maximizing the information
gain from future observations.

Additionally, the requirement to solve such optimization problems on resource-constrained
hardware in realtime brought up interesting approaches which exploit the similarity
between consecutive problem instances (temporal similiarity). Specifically, the real-world
dynamics imply that any macroscopic system undergoes continuous smooth, but never
arbitrarily fast state changes, resulting in consecutive optimization problems being similar
and therefore close to the initial guess, i.e. the previous iteration solution. In the case of
MPC, the so-called real-time iteration scheme [52, 253] exploits exactly this temporal
similarity, allowing near-optimal solutions in real time with low latency.

However, this solving scheme has been investigated in [248], but has not yet been exploited
by most estimation approaches, eventhough the same temporal-similarity assumptions
apply. A unified problem formulation would also require efficient online solution of the
resulting problem, possibly based on the real-time iteration scheme. It remains an open
question of how fast or how frequently these iterations must be run to capture the target
dynamic bandwidth given a certain set of possibly asynchronous sensors.
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3.2 Uncertainty in Modelling, Environments, and Task For-
mulation

Since optimization-based approaches rely on models of the physical system, they are
often limitted in performance by the accuracy of such models. While one could achieve
maximal model fidelity by iteratively measuring, extending, and refining existing dynamic
models, this is neither practical, nor economic, and unfortunately also ineffective. The
reason for this is three-fold: i) real-world imperfections render even equal designs with
slight difference, ii) certain tasks require interactions or changes of the robot dynamics
that are difficult to measure or forsee (e.g. inertia of deliviered package), and iii) there are
environmental changes that are practically impossible to model, e.g. weather, chaotic and
turbulent aerodynamics, or human behavior. Therefore, accurate modelling of the nominal
system dynamics is not sufficient, but realistic uncertainty description and prediction is
required.

State-of-the-art approaches use unimodal Gaussian noise to describe uncertainty, since it is
often a good approaximation of the real distribution, and allows for closed-form solutions
for multivariate inference. As a unimodal distribution it also brings the computational
advantage of convexity, rendering it well suited for iterative methods. This unfortunately
also implies the incapability to describe non-convex and therefore multiodal distributions.
However, exactly these distributions are often met in practical applications, where any
discrete decision could imply a non-convex state space. A simple example is obstacle
avoidance for mobile robots, where something as trivial as the question of "whether to go
left or right of a tree" can pose an intractable issue.

This could be achieved by novel analytic uncertainty formulations similar to the Gaussian
derivatives like the Kalman filter and LQR, systematic sampling approaches such as
branch-and-bound, or random sampling such as employed in particle filters, random
sample consensus (RANSAC), and rapidly-exploring random trees (RRT). I strongly
believe however, that we need new methods to describe arbitrary multimodal uncertainty,
which enables us to convexify or employ them in any other way directly into optimization
problems. This would not only allow to predict multiple, possibly discrete, future
system evolutions, but also regress multimodal hypotheses on measured data, with huge
implications on state estimation under outliers, and also machine learning.

Interestingly, similar questions arise when dealing with task and mission formulations
to command mobile robots, especially when those high-level references also need to be
generated by computer programs. How can we discribe ordered or unordered sets of tasks
for robots or even heterogenious fleets of robots, where these task sets can also include
topology, incomplete task descriptions arising from previously unknown environments,
multiple options for task completion, or collaborative tasks? To achieve this, we need
methods to model partially unknown, multimodal, and universally interpretable objective
models. This problem is nowadays typically circumvented with context-specific and

45



Chapter 3. Future Directions

manually designed heuristics, which is not an option if we strive to achieve ubiquitous
robotic solutions that integrate with a heterogenious infrastructure ecosystem. As of
these reasons, the fundamental issue of how to communicate tasks between humans and
robots, and inbetween robotic systems, remains an open question.

3.3 Machine Learning

Even though my thesis never directly included any machine learning techniques, I strongly
believe that they have and will further develop their own unique advantages. The vast
variety of machine learning appraoches and architectures, such as deep, convolutional,
adversarial, and recurrent neural networks, shares both, similarities and differences with
optimiztion-based approaches. They are similar in that they use numerical optimization
to find local, global, or approximate extremas, yet are very different in i) how cost and
gain (or loss and reward, respectively) are formulated, ii) the vast number of variables
and residuals, and iii) how the optimization is performed. Neural networks are extremely
powerful in that they allow to capture complex correlations, abstractions, or relations
without the need to specifically formulate them. Essentially, they allow to capture (and
sometimes compress) knowledge in a resource intensive, a priori computation (the trainig)
and provide it in a way efficienct for querying (the inferrence). These networks can
abstract high dimensional data into interpretable representations, such as images to labels,
bounding boxes, and poses, or encode complex relations,

In many aspects neural networks can complement optimization-based methods: they allow
discontinuities and non-convexity in the value function, can capture discrete decisions
in high dimensional space, and compress complex patterns enabling fast inference. In
my work on autonomous drone racing [110, 69] I have colaborated with my colleagues to
exploit those complementary properties and shown their effectivity.

However, my work has only touched the surface of what’s possible, and the true power
of their complementary nature remains to be discovered. Infact, I believe that novel
approaches to uncertainty modelling and processing could revolutionize robotics by
enabling a cardinal conjunction of inference over data approximations and optimization
over such.
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A Time-Optimal Planning for
Quadrotor Waypoint Flight

The version presented here is reprinted, with permission, from:

Philipp Foehn, Angel Romero, and Davide Scaramuzza. “Time-optimal planning for
quadrotor waypoint flight”. In: Science Robotics 6.56 (2021). doi: 10.1126/scirobotics.
abh1221. url: https://robotics.sciencemag.org/content/6/56/eabh1221
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Appendix A. Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor
Waypoint Flight

Philipp Foehn, Angel Romero, Davide Scaramuzza

Abstract — Quadrotors are amongst the most agile flying robots.
However, planning time-optimal trajectories at the actuation limit
through multiple waypoints remains an open problem. This is crucial
for applications such as inspection, delivery, search and rescue, and
drone racing. Early works used polynomial trajectory formulations,
which do not exploit the full actuator potential due to their inherent
smoothness. Recent works resorted to numerical optimization, but
require waypoints to be allocated as costs or constraints at specific
discrete times. However, this time-allocation is a priori unknown and
renders previous works incapable of producing truly time-optimal tra-
jectories. To generate truly time-optimal trajectories, we propose a
solution to the time allocation problem while exploiting the full quadro-
tor’s actuator potential. We achieve this by introducing a formulation
of progress along the trajectory, which enables the simultaneous opti-
mization of the time-allocation and the trajectory itself. We compare
our method against related approaches and validate it in real-world
flights in one of the world’s largest motion-capture systems, where we
outperform human expert drone pilots in a drone-racing task.
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Figure A.1: A time-optimal trajectory. This time-optimal flight path was computed using
the proposed complementary progress constraints (CPC) and executed in a motion capture
system, outperforming the best human expert.

A.1 Introduction

Autonomous drones are nowadays used for inspection, delivery, cinematography, search-
and-rescue, and entertainment such as drone racing [129]. The most prominent aerial
system is the quadrotor, thanks to its simplicity and versatility, ranging from smooth
maneuvers to extremely aggressive trajectories. This renders quadrotors amongst the
most agile and maneuverable aerial robots[2, 242].

However, quadrotors have limited flight range, dictated by their battery capacity, which
limits how much time can be spent on a specific task. If the task consists of visiting
multiple waypoints (delivery, inspection, drone racing [153, 68, 132]), doing so in minimal
time is often desired, and, in the context of search and rescue or drone racing (Fig. A.1),
even the ultimate goal. In fact, expert human drone racing pilots accomplish this with
astonishing performance, guiding their quadrotors through race tracks at speeds so far
unreached by any autonomous system. This begs the question of how close human pilots
fly to the theoretical limit of a quadrotor, and whether planning algorithms could find
and execute such theoretical optima.

For simple point-mass systems, time-optimal trajectories can be computed in closed-form,
resulting in bang-bang acceleration trajectories [121], which can be sampled over multiple
waypoints [186]. However, quadrotors are underactuated systems that need to rotate to
adjust their actuated acceleration direction, which always lies in the body z-axis [29, 141].
Both the linear and rotational acceleration are controlled through the rotor thrusts, which
are physically limited by the actuators. This introduces a coupling in the achievable
linear and rotational accelerations. Therefore, time-optimal planning becomes the search
for the optimal tradeoff between maximizing these accelerations.
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A.1.1 Related Work

Two common approaches for planning quadrotor trajectories exist, continuous-time
polynomials and discrete-time state space representations. The first option is the widely
used polynomial formulation [141, 149, 159] exploiting the quadrotor’s differentially-
flat output states with high computational efficiency. However, these polynomials are
inherently smooth and therefore cannot represent rapid state or input changes (e.g. bang-
bang [121]) at reasonable order, and only reach the input limits for infinitesimal short
durations, or constantly for the full trajectory time. This renders polynomials suboptimal
since they cannot exploit the full actuator potential. Both problems are visualized and
further explained in Section A.5, in the supplementary material.

The second option includes all approaches using time-discretized trajectories which can be
found using search and sampling-based methods [245, 4, 127, 258] or optimization-based
methods [90, 85, 12, 183]. However, sampling the 4-dimensional continuous input space
over many discrete time steps with sufficient resolution quickly becomes computationally
intractable, which is why prior work [245, 4, 127, 258] restores to point-mass, polynomial,
or differential-flatness approximations, and therefore does not handle single-rotor thrust
constraints. Therefore, planning time-discretized trajectories with optimization-based
methods is the only viable solution in the short-medium term. In such methods, the
system dynamics and input boundaries are enforced as constraints. In contrast to the
polynomial formulation, this allows the optimization to pick any input within bounds for
each discrete time step. For a time-optimal solution, the trajectory time tN is part of
the optimization variables and is the sole term in the cost function. However, if multiple
waypoints must be passed, these must be allocated as constraints to specific nodes on the
trajectory. This time allocation is a priori undefined, since the time spent between any
two waypoints is unknown, which renders traditional discretized state space formulations
ineffective for time-optimal trajectory generation through multiple waypoints.

We investigate this problem and provide a solution that allows simultaneously optimizing
the trajectory and waypoint allocation in a given sequence, exploiting the full actuator
potential of a quadrotor. Our approach formulates a progress measure for each waypoint
along the trajectory, indicating completion of a waypoint (see Fig. A.6). We then
introduce a "Complementary Progress Constraint" (CPC), that allows completion only
in proximity to a waypoint. Intuitively, proximity and progress must complement each
other, enforcing completion of all waypoints without specifying their time allocation.

There already exists a number of works towards time-optimal quadrotor flight [94, 131,
222, 204], which, however, all suffer from severe limitations, such as limiting the collective
thrust and bodyrates, rather than the actual constraint of limited single rotor thrusts.

The two earlier works [94, 131] are based on the aforementioned bang-bang approaches
extended through numerical optimization of the switching times [94] and a trajectory
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representation using a convex combination of multiple analytical path functions [131].
However, both are restricted to 2-dimensional maneuvers, whereas our approach generalizes
to arbitrary 3D waypoint sequences.

Another approach is taken in [222], where a change of variables along an analytic reference
path is used to put the vehicle state space into a traverse-dynamics formulation. This
allows using the arc length along the reference path as a progress measure and enables
the formulation of costs and constraints independent of the time variable. However, as in
the previous works, they simplify the platform limits to collective thrust and bodyrates,
neglecting realistic actuator saturation. Furthermore, due to the use of Euler angles, their
orientation space only covers a subset of the feasible attitudes and limits the solutions to
a, possibly sub-optimal, subspace.

Finally, [204] uses a completely different approach, where the segment times of a polynomial
trajectory are refined based on learning a Gaussian Classification model predicting
feasibility. The classification is trained on analytic models, simulation, and real flight
data. While emphasizing real-world applicability, this approach is still constrained to
polynomials and requires real-world data specifically collected for the given vehicle.
Furthermore, it is an approximate method which only refines the execution speed of
a predefined trajectory, rather than modifying the trajectory itself to a time-optimal
solution, as opposed to our method.

A.1.2 Contribution

In contrast to existing methods, our approach resolves these problems by taking inspiration
from optimization under contacts [187], proposing the formulation of complementary
progress constraints, where we introduce a measure of progress and complement [42] it with
waypoint proximity. More specifically, we formulate two factors that must complement
each other, where, in our case, one factor is the completion of a waypoint (progress), while
the other factor is the local proximity to a waypoint (Fig. A.6). Intuitively, a waypoint
can only be marked as completed when the quadrotor is within a certain tolerance of the
waypoint (Fig. A.7), allowing simultaneous optimization of the state and input trajectory,
and the waypoint time allocation.

We demonstrate how our formulation can generate trajectories that are faster than
human expert flights and evaluate it against two professional human drone racing pilots,
outperforming them in terms of lap time and consistency on a 3D race track in a large-
scale motion capture system (Fig. A.1). Since our proposed optimization problem is
highly non-convex, we also provoke non-convexity effects in simulation experiments in
the supplementary material (Section A.6).

Our method can not only serve as a baseline for time-optimal quadrotor flight but might
also find applications in other fields, such as (multi-) target interception, orbital maneuvers,
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Figure A.2: The quadrotor vehicle. The autonomous platform used for the real-world
experiments with a theoretical thrust-to-weight ration of ∼ 4 at 0.8 kg weight, equipped with a
Jetson TX2, a Laird communication module, off-the-shelf drone racing components, and infrared-
reflective markers for motion capture.

avoiding mixed-integer formulations [196], and any problem where a sequence of task
goals of unknown duration must be optimized under complex dynamic constraints.

A.2 Results

Video of the Results: https://youtu.be/ZPI8U1uSJUs

We chose drone racing as a demonstrator for our method because in racing the ultimate
goal is to fully exploit the actuator potential to accomplish a task in minimal time. In our
experiment, we set up a human baseline on a 3D race track with 7 gates (Fig. A.1 & A.5)
in a motion capture environment with two professional expert drone racing pilots. We
plan a time-optimal trajectory through the same race track and use an in-house developed
drone platform and software stack to execute the trajectory in the same motion capture
environment. We generate the trajectory at a slightly lower thrust bound than what
the platform can deliver, to maintain controllability under disturbances as mentioned in
Section A.5.4 and discussed in Section A.4.5. Our results show that we can outperform
the humans and consistently beat their best lap time.

A.2.1 Experimental Drone Platform

The experiments are flown with an in-house developed drone platform based on off-the-
shelf drone-racing components such as a carbon-fiber frame, BLDC motors, 5” propellers,
and a BetaFlight flight controller. The quadrotor is equipped with an NVIDIA Jetson
TX2 compute unit with WiFi and a Laird RM024 module for wireless low-latency
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A.2 Results

Table A.1: Quadrotor Configurations

Property Race Quad Airsim Quad Standard Quad
m [kg] 0.8 1.0 1.0
l [m] 0.15 0.23 0.15
diag(J) [gm2] [1, 1, 1.7] [10, 10, 20] [5, 5, 10]
[Tmin, Tmax] [N] [0.0, 8.0] [0.0, 4.179] [0.25, 5.0]
cτ [1] 0.01 0.0133 0.01
ωmax [rad s−1] 15 10 10
ddrag [s−1] 0.4 0.6 −

communication. The static maximum thrust of a single rotor was measured using a load
cell and verified in-flight, marking the platform’s real maximum limit at a thrust to weight
ratio of roughly ∼ 4. Other specifications can be taken from Tab. A.1 under the Race
Quad configuration.

For state estimation (pose, linear and angular velocities), we use a VICON system with 36
cameras. For control, we deploy a Model Predictive Controller, similar to [59] but based on
the quadrotor dynamics from (A.15–A.17), with the state space x = [pIB,qIB,vIB,ωB ]>

and input space u = [T1, T2, T3, T4]. The MPC operates over a horizon of NMPC = 20

time steps of δt = 0.05 s, with a quadratic cost function, and also accounts for the
single-rotor thrust constraints. The implementation is done using the ACADO[98] toolkit
and qpOASES[65] as solver. We execute the MPC in a real-time iteration scheme [51] at a
feedback rate of 100 Hz. The low-level BetaFlight controller has access to high-frequency
IMU measurements, which allows precise tracking of bodyrate and collective thrust
commands. These commands are extracted from the MPC controller and are guaranteed
to stay within the platform capabilities due to the single-rotor thrust constraints.

A.2.2 Human Expert Pilot Baseline

Since human pilots so far outperformed autonomous vehicles, we establish a baseline
by inviting two professional expert drone racing pilots, Michael Isler and Timothy
Trowbridge, both of which compete in professional drone racing competitions. A list of
their participation and rankings can be found in Tab. A.4 in the supplementary material.
We created a 3D racing track in a VICON motion capture environment spanning roughly
25 × 30 × 8m and let the humans train on this track for hours. We captured multiple
races, each consisting of multiple laps, from which we evaluated the one with the overall
best lap time, according to our timing strategy described in Section A.2.4. The quadrotor
platform used for human flights has the same thrust-to-weight ratio as the autonomous
platform. This provides a fair baseline since (I) both the humans and the autonomous
drone have the same limitations, (II) the humans are given enough training time to adapt
to the track, as is the case at a real drone racing event, and (III) we compare against the
race including the absolute best lap time from all runs. Especially the latter point gives
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a substantial advantage to the human competitors, since they are typically not capable of
reproducing the absolute best lap time reliably, and would therefore fall behind in any
multi-lap evaluation. The evaluated best human runs each contain 7 laps.

The human platform is also tracked in the VICON system and resembles the autonomous
drone described in Section A.2.1, but drops the Jetson and Laird modules for a remote
control receiver and a first-person-view camera system, with no weight difference. To keep
a fair baseline, the human platform is restricted to the same maximum thrust-to-weight
limit as the autonomous drone. The track, time-optimal reference (thrust-to-weight ratio
3.3), and the human expert 1 trajectory are visualized in Fig. A.5, with their speed and
acceleration profile colorized.

A.2.3 Trajectory Generation

To generate the time-optimal trajectories that will be executed by our platform, we set
the gate positions of the track shown in Fig. A.5 as waypoint constraints. We generate
2.5 laps to ensure that our experiments are not affected by start and end transient effects
or large drops in battery voltage, and to ensure at least two full laps at maximum speed.
For optimal results, the laps are generated by concatenating the waypoints for a single lap
multiple times and solving the full multi-lap problem at once. Therefore, the optimization
passes through 18 waypoints and can be solved on a normal desktop computer in ∼ 40 min.
We used N = 720 nodes with a tolerance of dtol = 0.3 m.

Because a time-optimal trajectory exploits the full actuator potential, it is extremely
aggressive from start to end. To ensure safe execution on a real drone, we linearly ramp
up the thrust limit for the trajectory generation from hover to the full thrust limit,
guaranteeing a smooth start of the trajectory. Since we plan over 2.5 laps and exclude the
start and end from the timing, this has no notable impact on the reported timing results.
The same start and end exclusion are done for the human timings (Section A.2.4).

Additionally, we plan the trajectory for a multitude of thrust-to-weight ratios reaching
from 2.5 with a lap time of 7.14 s to a maximum of 3.6 resulting in a lap time of 5.81 s.
As expected, the time shrinks with higher thrust-to-weight capabilities. We evaluate
two configurations with thrust-to-weight ratios of 3.15 (6.27 s) and 3.3 (6.10 s) in our
real-world experiments, reported in the following section. Both of these configurations
are consistently faster than the human trajectory while staying within a safe margin of
the quadrotors absolute limit (TWR: ∼ 4), which allows for robust control even under
disturbances, noise, and model imperfections.
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Figure A.3: Timing analysis. Lap time box plot of our time-optimal trajectory executed
in real-world for two configurations (two laps), and two human races (seven laps). Note that
even with a 5% reduced thrust-to-weight ratio of 3.15, the proposed time-optimal trajectories are
faster than the best human lap time, with substantially lower variance.
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Figure A.4: Visualization of the timing strategy. A race includes two or more laps,
over each of which we distribute 40 points at which we take timings of the resulting segments
S1, . . . , SN . This allows for statistically meaningful timing extraction.

A.2.4 Timing Analysis

First of all, our real-world experiments should provide a proof-of-concept that time-optimal
trajectories planned below the drone’s actual thrust limit are a feasible and viable solution.
We refer the reader to the accompanying Movie at https://youtu.be/ZPI8U1uSJUs.

Second, we point out that it is possible to generate and execute trajectories that can
outperform the human baseline. For this we provide a statistical lap-time analysis in Fig.
A.3, indicating the superior performance on both configurations.

To compute reliable lap times, we first define a full lap as each lap that is not affected by
any start (take-off) or end (landing) segment. We can then pick a set of timing points
Spt = {pt0,pt1, . . .} along the trajectory, and define the timing as the time needed to
visit one such point twice, i.e. the time of a segment starting and ending at the same
point. This measure allows us to extract a statistically valid timing of a single closed lap,
which does not depend on the location of timing start and stop.

Effectively we time the best laps of the human flights, and two full laps of both our race
trajectories, each flown twice. Fig. A.3 shows the obtained timing results, where it is
clearly visible that the autonomous drone outperforms the human pilots both in absolute
time, but also consistency. The latter is expected since once the trajectory is generated,
it can be repeated multiple times without variation.
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Figure A.5: Comparison against a human pilot. The race track with seven gates visualized
with the yellow-red real-world trajectories of the humans (left, all seven laps of the race including
the overall best lap time) and the autonomous drone (right, two laps visualized), and the
green-blue time-optimal reference trajectory with a thrust-to-weight ratio (TWR) of 3.3. The
trajectories are colored by their speed profile (top row) and acceleration profile (bottom row) to
indicate the hotspots of highest velocity and acceleration along the track. The two black arrows
indicate the direction of flight. The human pilots vary their acceleration substantially more than
the autonomous drone and spend more time at sub-optimal acceleration (yellow coldspots on
the lower left figure). Note that the gate in the lower-left corner consists of two gates stacked
vertically.
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Table A.2: Timing Statistics

Timing human 1 human 2 ours ours
TWR: 3.15 TWR: 3.3

mean [s] 6.794 6.987 3.15 6.120
median [s] 6.740 6.960 6.272 6.116
min [s] 6.389 6.450 6.190 6.048
max [s] 7.530 7.780 6.354 6.215
std [s] 0.2556 0.2859 0.0280 0.0278

A.3 Methodology

General Trajectory Optimization

The general optimization problem of finding the minimizer x∗ for cost L(x) in the state
space x ∈ Rn can be stated as

x∗ = arg min
x

L(x) (A.1)

subject to g(x) = 0 and h(x) ≤ 0

where g(x) and h(x) contain all equality and inequality constraints respectively. The
full state space x is used equivalently to the term optimization variables. The cost L(x)

typically contains one or multiple quadratic costs on the deviation from a reference, costs
on the systems actuation inputs, or other costs describing any desired behaviors.

Direct Multiple Shooting Method

To represent a dynamic system in the state space we use a direct multiple-shooting
method [26]. The system state xk is described at discrete times tk = dt · k at k ∈ [0, N ],
also called nodes, where its actuation inputs between two nodes are uk at tk with
k ∈ [0, N). The systems evolution is defined by the dynamics ẋ = fdyn(x,u), anchored
at x0 = xinit, and implemented as an equality constraint of the 4th-order Runge-Kutta
integration scheme (RK4 ):

xk+1 − xk − fRK4(xk,uk, dt) = 0 (A.2)

which is part of g(x) = 0 in the general formulation. Both xk, uk are part of the state
space and can be summarized as the vehicle’s dynamic states xdyn,k at node k. Note that
this renders the problem formulation non-convex for non-linear system dynamics.
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Time-Optimal Trajectory Optimization

Optimizing for a time-optimal trajectory means that the only cost term is the overall
trajectory time L(x) = tN . Therefore, tN needs to be in the optimization variables
x = [tN , . . . ]

>, and must be positive tN > 0. The integration scheme can then be adapted
to use dt = tN/N .

A.3.1 Passing Waypoints through Optimization

To generate trajectories passing through a sequence of waypoints pwj with j ∈ [0, . . . ,M ],
one would typically define a distance cost or constraint and allocate it to a specific state
xdyn,k at node k with time tk. For cost-based formulations, quadratic distance costs are
robust in terms of convergence and implemented as

Ldist,j = (pk − pwj)
>(pk − pwj) (A.3)

where pk, part of x, is the position state at a user defined time tk. However, such a
cost-based formulation is only a soft requirement and if summed with other cost terms
does not imply that the waypoint is actually passed within a certain tolerance. To
guarantee to pass within a tolerance, constraint-based formulations can be used, such as

(pk − pwj)
>(pk − pwj) ≤ τ2j (A.4)

which in the general problem is part of h(x) ≤ 0, and requires the trajectory to pass by
waypoint j at position pwj within tolerance τj at time tk.

A.3.2 Progress Measure Variables

To describe the progress throughout a track we want a measure that fulfills the following
requirements: (I) it starts at a defined value, (II) it must reach a different value by the
end of the trajectory, and (III) it can only change when a waypoint is passed within a
certain tolerance. To achieve this, let the vector λk ∈ RM define the progress variables
λjk at timestep tk for all M waypoints indexed by j. All progress variables start at 1 as
in λ0 = 1 and must reach 0 at the end of the trajectory as in λN = 0. The progress
variables λ are chained together and their evolution is defined by

λk+1 = λk − µk (A.5)

where the vector µk ∈ RM indicates the progress change at every timestep. Note that
the progress can only be positive, therefore µjk ≥ 0. Both λk and µk for every timestep
are part of the optimization variables x, which replicates the multiple shooting scheme
for the progress variables. To define when and how the progress variables can change, we

58



A.3 Methodology

State-of-the-Art: Waypoint Allocation using Constraints

Ours: Waypoint Progress Variables  and their Completion (Arrows)

Figure A.6: Progress variables. Top: state-of-the-art fixed allocation of positional waypoints
pwj to specific nodes xi. Bottom: our method of defining one progress variable λj per waypoint.
The progress variable can switch from 1 (incomplete) to 0 (completed) only when in the proximity
of the relevant waypoint, implemented as a complementary constraint.

now imply a vector of constraints fprog on µk, in its general form as

ε−k ≤ fprog(xk,µk) ≤ ε+k (A.6)

where ε−, ε+ can form equality or inequality constraints. Finally, to ensure that the
waypoints are passed in the given sequence, we enforce subsequent progress variables to
be bigger than their precursor at each timestep by

λjk ≤ λ
j+1
k ∀ k ∈ [0, N ], j ∈ [0,M). (A.7)

Note that the last waypoint pwM is always reached at the last node at tN , and, therefore,
could be implemented as a fixed positional constraint on xN , without loss of generality.

Complementary Progress Constraints

In the context of waypoint following, the goal is to allow µk to only be non-zero at the
time of passing a waypoint. Therefore, fprog and ε− = ε+ = 0 are chosen to represent a
complementarity constraint [187], as

fprog,j(xk,µk) = µjk · ‖pk − pwj‖22 := 0

∀j ∈ [0,M ] (A.8)

which can be interpreted as a mathematical NAND (not and) function, since either µjk or
‖pk − pwj‖ must be 0. Intuitively, the two elements complement each other.
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Figure A.7: Complementary progress constraint. The progress change µ can only be
non-zero if the distance to the waypoint pw is less than the tolerance dtol. This is not the case
for x0, but for x1, and allowing the progress variable to switch to 0 (complete).

A.3.3 Tolerance Relaxation

With (A.8) the trajectory is forced to pass exactly through a waypoint. Not only is
this impractical, since often a certain tolerance is admitted or even wanted, but it
also negatively impacts the convergence behavior and time-optimality, since the system
dynamics are discretized and one of the discrete timesteps must coincide with the waypoint.
Therefore, it is desirable to relax a waypoint constraint by a certain tolerance which is
achieved by extending (A.8) to

fprog,j(xk,µk) = µjk ·
(
‖pk − pwj‖22 − νjk

)
:= 0

subject to 0 ≤ νjk ≤ d2tol∀j ∈ [0,M ] (A.9)

where νjk is a slack variable to allow the distance to the waypoint to be relaxed to zero
when it is smaller than dtol, the maximum distance tolerance. This now enforces that the
progress variables cannot change, except for the timesteps at which the system is within
tolerance to the waypoint. Furthermore, please note that the spatial discretization δs
depends on the number of nodes N and the speed profile. It should hold that δs < dtol,
to always allow at least one node to lie within the tolerance, as visualized in Fig. A.7.
This can be verified after the optimization and approximated beforehand by δs ≈ D/N ,
where D is the cumulative distance between all waypoints.

A.3.4 Optimization Problem Summary

The problem can be implemented using CasADi [6] and solved using IPOPT [244]. The
full space of optimization variables x consists of the overall time and all variables assigned
to nodes k as xk. All nodes k include the robot’s dynamic state xdyn,k, its inputs uk, and
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all progress variables, x = [tN ,x0, . . . ,xN ] where

xk =

{
[xdyn,k,uk,λk,µk,νk] for k ∈ [0, N)

[xdyn,N ,λN ] for k = N.

Based on this representation, we write the full problem as

x∗ = arg min
x

tN (A.10)

subject to the system dynamics and initial constraint

xk+1 − xk − dt · fRK4(xk,uk) = 0 x0 = xinit,

the input constraints

umin − uk ≤ 0 uk − umax ≤ 0, (A.11)

the progress evolution, boundary, and sequence constraints

λk+1 − λk + µk = 0

λ0 − 1 = 0 λN = 0 (A.12)

µk ≥ 0 λjk − λ
j+1
k ≤ 0 ∀k ∈ [0, N), j ∈ [0,M),

and the complementary progress constraint with tolerance

µjk ·
(
‖pk − pwj‖22 − νjk

)
= 0 (A.13)

−νjk ≤ 0 νjk − d2tol ≤ 0. (A.14)

Note that constraints (A.13, A.14) are non-linear due to the norm on distance and the
bilinearity of the progress change µ and tolerance slack ν.

A.3.5 Quadrotor Dynamics

The quadrotor’s state space is described between the inertial frame I and body frame B,
as x = [pIB,qIB,vIB,ωB ]> corresponding to position pIB ∈ R3, unit quaternion rotation
on the rotation group qIB ∈ SO(3) given ‖qIB‖ = 1, velocity vIB ∈ R3, and bodyrate

ωB ∈ R3. The input modality is on the level of collective thrust TB =
[
0 0 TBz

]>
and body torque τB. From here on we drop the frame indices since they are consistent
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throughout the description. The dynamic equations are

ṗ = v q̇ =
1

2
Λ(q)

[
0

ω

]
v̇ = g +

1

m
R(q)T ω̇ = J−1 (τ − ω × Jω)

(A.15)

where Λ represents a quaternion multiplication, R(q) the quaternion rotation, m the
quadrotor’s mass, and J its inertia.

Quadrotor Inputs

The input space given by T and τ is further decomposed into the single rotor thrusts
u = [T1, T2, T3, T4]. where Ti is the thrust at rotor i ∈ {1, 2, 3, 4}.

T =

 0

0∑
Ti

 and τ =

 l/
√

2(T1 + T2 − T3 − T4)
l/
√

2(−T1 + T2 + T3 − T4)
cτ (T1 − T2 + T3 − T4)

 (A.16)

with the quadrotor’s arm length l and the rotor’s torque constant cτ . The quadrotor’s
actuators limit the applicable thrust for each rotor, effectively constraining Ti as

0 ≤ Tmin ≤ Ti ≤ Tmax. (A.17)

In Fig. A.8 we visualize the acceleration space and the thrust torque space of a quadrotor
in the xz-plane. Note that the acceleration space in Fig. A.8 is non-convex due to
Tmin > 0 for the depicted model parameters from the standard configuration of Tab. A.1.
The torque space is visualized in Fig. A.8, where the coupling between the achievable
thrust and torque is visible.

A.3.6 Approximative Linear Aerodynamic Drag

Finally, we extend the quadrotor’s dynamics to include a linear drag model [58], to
approximate the most dominant aerodynamic effects with diagonal matrix D by

v̇ = g +
1

m
R(q)T−R(q)DR>(q) · v (A.18)

where we approximate D = diag(dx, dy, dz) in this work.

A.4 Discussion
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Figure A.8: Quadrotor input space. Acceleration (left) and thrust/torque-space (right) of
a standard quadrotor configuration. Note that the acceleration space is non-convex due to the
minimum acceleration (the idle thrust at minimum motor speed) amin > 0 being non-zero, and
the thrust and torque limits are dependent on each other.

A.4.1 Velocity and Acceleration Distribution

Furthermore, we evaluate the velocity and acceleration distribution over the different
human and time-optimal flights. We depict the trajectories colored by their speed and
acceleration profile in Fig. A.5 with the time-optimal reference with TWR: 3.3. Inspecting
the hotspots of darker colors in the velocity plots (Fig. A.5, top row) indicating higher
speeds, we can see that the velocity distribution is rather similar for the autonomous
time-optimal and the human trajectory. However, comparing the acceleration of the
human and the time-optimal trajectory (Fig. A.5, bottom row), we observe that the
acceleration of the human varies considerably more, and often dips to lower values than
the time-optimal ones. This corresponds to sections where the human pilots do not use
the full actuation spectrum of the platform and lose substantial performance over the
time-optimal trajectory. This is especially visible in the right-most section of the track,
where the flight path has relatively low curvature. The time-optimal trajectory exploits
the full acceleration capabilities, whereas the human notably reduces the acceleration
between the right-most gates, leading to lower speeds in the following bottom section of
the track.

Furthermore, we can identify the high-speed region in the sections of low curvature,
where both human and autonomous platforms spend more acceleration in the velocity
direction (accelerating and braking), than perpendicular to the velocity (direction change).
Although the platforms have equal TWR, and our time-optimal trajectory is planned with
a substantial margin to the platform’s TWR limit, it exceeds the human speed profile.
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A.4.2 Human Performance Comparison

From our findings in Section A.2.4 and A.4.1, we conclude that human pilots are not
far away from our time-optimal trajectory, since they reach similar but slower velocity
distribution and lap times. However, humans struggle to consistently exploit the full
actuation spectrum of the vehicle, resulting in suboptimal performance compared to our
approach. One possible reason for this can be found in [184], where we analyzed eye gaze
fixations of human pilots during racing and found that they fixate their eyes on upcoming
gates well before passing the next gate, indicating that humans use a receding planning
horizon, whereas our approach optimizes the full trajectory at once.

A.4.3 Tracking Error Considerations

We want to point out that while we achieved successful deployment on a real quadrotor
system, we experience substantial tracking errors in doing so, as visible in Fig. A.5.
While this work is not about improving the tracking performance, but should rather
serve as a feasibility study given our method, we still feel responsible for pointing out
the encountered difficulties. A number of effects lead to this tracking error of ∼ 0.7 m

positional RMSE:

(I) We did not account for any latency correction of the whole pipeline, including motion
capture and pose filtering, data transmission to the drone, MPC execution time, and
communication to the flight controller.

(II) Our simple linear-drag aerodynamic model was verified in [58] at speeds up to 5 m s−1.
However, in the vastly higher speed regimes we reach during our real-world experiments,
the model seems to be inaccurate, especially in terms of drag at higher speeds and in
body z direction. The effect of this is visible in Fig. A.5, where there is a disturbance
towards the inside of the curvature for most of the time.

(III) The used BetaFlight controller is a reliable system for human drone pilots. However,
as such, it includes many filtering, feed-forward, and control strategies that are tuned
for a consistent human flight-feeling. Unfortunately, this does not translate to accurate
closed-loop control or desirable control-loop shaping and causes more harm than good
when used with closed-loop high-level controllers such as our MPC. Not only is it not
possible to command the single rotor thrusts from the MPC to BetaFlight, but the
provided bodyrate tracking also performed poorly. This, however, could be solved with a
custom flight controller and might be part of further studies.

64



A.4 Discussion

A.4.4 Convexity and Optimality

While the problem of trajectory optimization quickly becomes non-convex when using
complex and/or non-linear dynamic models, constraints, or even cost formulations (e.g.
obstacle avoidance), it is often a valid approach to generate feasible (in terms of model
dynamics) trajectories. In fact, given a non-convex problem, solution schemes such as the
used interior point method can only guarantee local optimality and global feasibility, but
not global optimality. Within our approach, we can summarize the following non-convex
properties:

• The quadrotor dynamics (A.15) are non-linear and therefore non-convex in the
context of (A.2).

• The acceleration space of a quadrotor (A.17) is non-convex given non-zero minimal
thrust Tmin > 0.0.

• Eqn. (A.13) is non-convex due to the norm on distance and the bilinearity of the
progress change µ and tolerance slack ν.

In our experiments in Sections A.6.5 and A.6.6, we provoke such non-convex properties,
and explain how the optimization can be supported with an advanced initialization scheme
to start close to the global optimum.

This can be achieved by reducing the non-linear quadrotor model into a linear point-
mass model with bounded 3D acceleration input u = a where ‖a‖ ≤ amax. The linear
model removes the prominent non-convex dynamics and allows us to find a solution from
which the original problem with the quadrotor model can be initialized, both in terms
of translational trajectory, and also with a non-continuous orientation guess based on
the point-mass acceleration direction. While this initial guess is not yet dynamically
feasible for quadrotors due to the absent rotational dynamics, it serves as a valid initial
guess in the convex region of the global-optimal translation space. Finally, the rotational
non-convexity can be resolved by solving multiple problems of different initializations, as
demonstrated in Section A.6.5.

Last but not least, the reader should note that even in the case of a local (but not global)
optimal solution, the vehicle dynamics are satisfied and the trajectory is dynamically
feasible.

A.4.5 Real-World Deployment

There are three challenges when deploying our approach in real-world scenarios.

The first problem is posed by the nature of time-optimal trajectories themselves, as
the true solution for a given platform is nearly always at the actuator constraints,
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and leaves no control authority. This means that even the smallest disturbance could
potentially have damaging consequences for the drone and render the remainder of the
trajectory unreachable. One has to define a margin lowering the actuator constraints
used for the trajectory generation to add control authority and therefore robustness
against disturbances. However, this also leads to a slower solution, which is no longer
the platform-specific time-optimal one. In the context of a competition, this effectively
becomes a risk-management problem with interesting connections to game theory.

Second, our method is computationally demanding, ranging from a few minutes (< 20 min)
for scenarios as in Sections A.6.2 and A.6.5 towards an hour or more for larger scenarios
such as Section A.2 with ∼ 40 min and Section A.6.7 with ∼ 65 min on a normal desktop
computer. However, this is highly implementation-dependent and could be vastly broken
down to usable times, or precomputed for static race tracks and other non-dynamic
environments. Furthermore, our approach provides a method for finding the theoretical
upper bound on performance, as a benchmark for other methods.

Third, we use a motion capture system to deploy our method. However, in real-world
scenarios, such high-performance off-board localization systems are barely ever available.
This necessitates the deployment using on-board state-estimation systems, such as visual-
inertial odometry. Unfortunately, these systems can suffer from high motion blur in such
fast flight scenarios, and therefore need substantial further research and development
to be of sufficient robustness for the purpose of time-optimal flight [68, 153]. Despite
those difficulties, we have demonstrated that our method can be deployed and is in fact
substantially faster than human experts.
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A.5 Preface: Time-Optimal Quadrotor Trajectory

A.5.1 Point-Mass Bang-Bang

Time-optimal trajectories encapsulate the best possible action to reach one or multiple
targets in the lowest possible time. We first investigate a point mass in R3 controlled by
bounded acceleration a ∈ R3 | ‖a‖ ≤ amax, starting at rest position p0 and translating to
rest position p1. The time-optimal solution takes the form of a bang-bang trajectory over
the time topt, accelerating with amax for topt/2, followed by decelerating with amax for
topt/2. A trajectory through multiple waypoints can be generated similarly by optimizing
or sampling over the switching times and intermittent waypoint velocities. For the general
solution and applications, we refer to [186] and [121].

A.5.2 Bang-Bang Relation for Quadrotors

A quadrotor would exploit the same maximal acceleration by generating the maximum
thrust. However, due to the quadrotor’s underactuation, it cannot instantaneously change
the acceleration direction but needs to rotate by applying differential thrust over its
rotors. As a result, the linear and rotational acceleration, both controlled through the
limited rotor thrusts, are coupled (visualized later in Fig. A.8). Therefore, a time-optimal
trajectory is the optimal tradeoff between rotational and linear acceleration, where the
thrusts only deviate from the maximum to adjust the rotational rates. Indeed, our
experiments confirm exactly this behavior (see e.g. Fig. A.11).

A.5.3 Sub-Optimality of Polynomial Trajectories

The quadrotor is a differentially flat system [149] that can be described based on its
four flat output states, position, and yaw. This allows representing the evolution of the
flat output states as smooth differentiable polynomials of the time t. To generate such
polynomials, one typically defines its boundary conditions at the start and end time, and
minimizes for one of the derivatives, commonly the jerk or snap (3rd/4th derivative of
position, as in [159, 148]). The intention behind such trajectories is to minimize and
smooth the needed body torques and, therefore, single motor thrust differences, which are
dependent on the snap. Since the polynomials are very efficient to compute (especially
[159]), trajectories through many waypoints can be generated by concatenating segments
of polynomials, and minimal-time solutions can be found by optimizing or sampling over
the segment times and boundary conditions. However, these polynomials are smooth by
definition, which stands in direct conflict with maximizing the acceleration at all times
while simultaneously adapting the rotational rate, as explained in the previous Section
A.5.2. In fact, due to the polynomial nature of the trajectories, the boundaries of the
reachable input spaces can only be touched at one or multiple points, or constantly, but
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Figure A.9: Bang-bang and polynomial trajectories. Multiple orders of polynomial
trajectories and one bang-bang trajectory with limited slope. The polynomial trajectories only
touch the input extrema in two points, while the bang-bang spends more time at the limit and
achieves a lower overall time.

not at subsegments of the trajectory, as visualized in Fig. A.9.

A.5.4 Real-World Restrictions

While the time-optimal solutions are at the boundary of the reachable input space and
cannot be tracked robustly [121], they represent an upper bound on the performance
for a given track, intended as a baseline for other algorithms. However, we can lower
the input bounds (w.r.t the real quadrotor actuator limit) for the purpose of trajectory
generation, allowing for control authority and therefore restoring a margin for robustness,
rendering the planned trajectories trackable in the real world. As an application example,
we present a demonstration of our method, where we track a time-optimal trajectory
with a real quadrotor in a motion capture system and consistently outperform the human
expert baseline.
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A.6 Simulation Experiments

To demonstrate the capabilities and applicability of our method, we test it on a series
of experiments. We first evaluate a simple point-to-point scenario and compare to [94,
131] in Section A.6.2. Next, we investigate the time alignment for multiple waypoints in
Section A.6.3, followed by an experimental investigation of the convergence characteristics
on short tracks in terms of initialization in Section A.6.4 and (non-) convexity in Section
A.6.5. Finally, we demonstrate applicability to longer tracks with ≥ 10 waypoints (Section
A.6.7). Note that this section will focus on the trajectory generation, while Section A.2
will demonstrate real-world deployment.

All evaluations are performed using CasADI [6] with IPOPT [244] as solver backend.
We use multiple different quadrotor configurations, as listed in Tab. A.1. The first
configuration represents a typical race quadrotor, the second one is parameterized after
the MicroSoft AirSim [213] SimpleFlight quadrotor, and the third standard configuration
resembles the one used in [94, 131].

A.6.1 Initialization Setup

If not stated differently, the optimization is initialized with identity orientation, zero
bodyrates, 1 m s−1 velocity, linearly interpolated position between the waypoints, and
hover thrusts. The total time is set as the distance through all waypoints divided by the
velocity guess. The node of passing a waypoint (respectively where the progress variables
λ switch to zero) is initialized as equally distributed, i.e. for waypoint j the passing node
is kj = N · j/M . We define the total number of nodes N based on the number of nodes
per waypoint Nw so that N = MNw. We typically chose roughly Nw ∈ (50, 100) nodes
per waypoint, to get a good linearization depending on the overall length, complexity,
and time of the trajectory. Note that high numbers of Nw � 100 help with convergence
and achieved stability of the underlying optimization algorithm.
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Figure A.10: Baseline comparison. Time-optimal hover-to-hover trajectories between states
spaced px = [3, 6, 9, 12, 15]m apart as in [94, 131]. The top figure depicts the position on the
xz-plane, while the bottom figure depicts the velocity profile.

A.6.2 Time-Optimal Hover-to-Hover Trajectories

We first evaluate trajectory generation between two known position states in hover, one
at the origin, and one at px = [3, 6, 9, 12, 15]m, as in [94, 131]. Additionally to the
problem setup explained in Section A.3, we add constraints to the end state to be in
hover, i.e. vN = 0 and q =

[
1 0 0 0

]
. We use N = Nw = 300 nodes and a tolerance

of dtol = 10−3. Different from [94, 131], we compute the solution in full 3D space, which
however does not matter for this experiment, since the optimal trajectory stays within
the y-plane. We defined the model properties so that it meets the maximal and minimal
acceleration [amin, amax] = [1, 20]m s−2 and maximal bodyrate ωmax = 10 rad s−1 as in
[94, 131], given by our standard quadrotor configuration (see Tab. A.1).

The solutions are depicted in the xy-plane in Fig. A.10 and the timings are stated and
compared to [94, 131] in Tab. A.3. In addition to our proposed single-rotor-thrust model
A.15 (reported as ours in tab. A.3), we also compute the timings for a simplified model
with only collective thrust and bodyrate constraints, but no single-rotor-thrust modeling,
as used in [94, 131] (reported as CPC-RT in Tab/ A.3). Note that our approach with
the simplified model produces results very similar to [94, 131], but with the increased
model-fidelity, our approach is 2.00% slower than [94] and 2.68% slower than [131], due to
the added rotational dynamics. However, [94, 131] does not allow to compute trajectories
through multiple waypoints and [222] employs the same unrealistic bodyrate and thrust
limits. In contrast, our method accounts for both, realistic single rotor thrust limits and
multiple waypoints, while simultaneously solving the time-allocation, as evaluated in the
next section.

px vs Time Ref. [94] Ref. [131] CPC-RT CPC (ours)
3m 0.898 s 0.890 s 0.891 s 0.918 s
6m 1.231 s 1.223 s 1.227 s 1.255 s
9m 1.488 s 1.478 s 1.484 s 1.517 s
12m 1.705 s 1.694 s 1.702 s 1.736 s
15m 1.895 s 1.885 s 1.894 s 1.933 s

Table A.3: Comparison of the resulting timings between our approach and [94, 131]. Note
that our approach is 2.00% slower than [94] and 2.68% slower than [131], because it accounts for
rotation dynamics and single rotor limits. Our approach applied to the dynamics and limits of
[94, 131], closely reproduces their results (column CPC-RT ).
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Figure A.11: Time allocation. A trajectory along waypoints distributed on a line over 50 m,
flown in 2.430 s. On the left side, the waypoints are equally distributed over the total distance,
while on the right side the first 4 out of 5 waypoints are located within the first half of the total
distance. The bottom plot depicts the progress variables as initialized (dashed −−) and as in the
final solution (solid −). Note that both settings converge to the exact same solution, while the
time of passing the waypoints was substantially adjusted from the initialization, and is different
between the settings.

A.6.3 Optimal Time Allocation on Multiple Waypoints

In this experiment, we define a straight track between origin and px = 50 m trough
multiple waypoints. The goal is to show how our method can choose the optimal time at
which a waypoint is passed. Therefore, we test two different distributions of the waypoints
pwj over the straight track; specifically, we define a regular (px,reg = [1, 20, 30, 40, 50]m),
and an irregular (px,ireg = [10, 15, 20, 25, 50]m) distribution. We chose N = 125 and a
tolerance of dtol = 0.4 m, with the standard quadrotor (see Table A.1).

As expected, both waypoint distributions converge to the same solution of tN = 2.430 s,
depicted in Fig. A.11, with equal state and input trajectories, despite the different
waypoint distribution. Since the waypoints are located at different intervals, we can
observe a different distribution of the progress variables in Fig. A.11, while the trajectory
time, dynamic states, and inputs stay the same.
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Figure A.12: Convergence quality. Convergence in an open hairpin turn from different
initializations in red (—) over the iterations in light blue (—), to the final solution in dark blue(—).
The trajectory starts at the top left and passes through the two waypoints (×). While the good
initialization in the left figure needs 216 iterations, the poor guess in the middle figure needs
303 iterations, but both converge to exactly the same solution with tN = 3.617 s. The rightmost
figure additionally shows 100 random initializations, all converging to the same solution.

A.6.4 Initialization & Convergence

As a next step, the method is tested for convergence properties given different initial-
izations. For this, we again use the standard quadrotor configuration and discretize the
problem into N = 160 nodes with a tolerance of dtol = 0.4 m. We use a track consisting of
a so-called open hairpin, consisting of two waypoints as seen on the xy-plane in Fig. A.12,
starting on the top left and passing the waypoint to the far right and bottom left, where
the endpoint is not in hover. Multiple setups are tested, where the first one is initialized
with the position interpolated between the waypoints (Fig. A.12, left), the second one is
initialized with a poor guess interpolated only from start to endpoint (Fig. A.12, middle),
and the third one includes 100 random initializations (Fig. A.12, right).

The expected outcome is that all initialization setups should converge to the same solution.
Indeed we can observe this behavior in Fig. A.12, where we depict the initial position
guess in red and the convergence from light to dark blue. The good initial guess in the
leftmost Fig. A.12 results in 216 iterations until convergence, while the poor guess in
the middle Fig. A.12 needs 303 iterations. In the rightmost Fig. A.12 we perform 100
uniform random initializations on a 6 × 6m xy-plane around the start and end point,
and a 30× 12meter xy-plane around the mid point. All initializations converge to the
same solution. Overall, this indicates that our method is not sensitive to initialization
variations in the translation space, but profits from good guesses. However, since the
acceleration and orientation space of a quadrotor is not convex, the next two experiments
elaborate on how to provoke and circumvent possible non-convexity issues in the rotation
dynamics.
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A.6.5 Provoking Non-Convexity Issues

Since quadrotors can only produce thrust in body z-axis and the motors of most real-world
systems cannot turn off, and therefore always produce a positive minimal thrust Tmin > 0,
the resulting acceleration space is non-convex. We evaluate this on a vertical turn where
we fly from hover at the origin through two waypoints directly above each other, back to
the origin but not in hover. The Track can be seen in Fig. A.13.

First, the standard quadrotor configuration is used, with N = 150 nodes and a tolerance of
dtol = 0.1 m, with the general initialization setup where the orientation is kept at identity.
A second setup uses a different initialization, where we interpolate the orientation around
the y-axis between αinit = 0, α0 = π for the second waypoint and α1 = α2 = 2π for the
remaining waypoints. The solutions and associated initializations are depicted in the top
Fig. A.13, in which it is obvious that they do not converge to the same solution. The
second setup actually performs a flip which is slightly faster at 4.115 s compared to the
first setup at 4.171 s (1.3% faster). This is expected due to the non-convex properties of
the problem.

However, a second set of experiments is performed with the same initialization setups but
the race quadrotor configuration. This configuration has a minimum thrust of Tmin = 0 N,
which renders the achievable acceleration space convex. Note that the full problem
formulation still is non-convex, due to the non-linear dynamics and constraints. Both
setups for the race configuration are depicted in the bottom Fig. A.13, and indeed, both
initializations now converge to the same solution, which overlay each other and achieve
the same timing at 2.885 s.

A simple solution would be to first solve the same problem using a linear and therefore
convex point-mass model and using this to initialize the problem with the full quadrotor
model. We further elaborate on the convexity property in the discussion Section A.4.4.
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Figure A.13: Influence of convexity. A vertical turn flown starting at the origin in hover
and passing through both waypoints from top to bottom, and back to the origin. Two quadrotor
configurations are used (standard in the top figure and race configuration in the bottom figure),
with two different initialization setups each. The first setup is as described in Section A.6 with
identity orientation, while the second setup uses a linearly interpolated orientation guess. The
arrows indicate the thrust direction of the quadrotor. The standard quadrotor configuration
converges to two different solutions in the top figure depending on the initialization due to its
non-convex acceleration space with Tmin > 0 N, while the race quadrotor configuration converges
to equal (and overlaying) solutions in the bottom figure, due to its convex acceleration space with
Tmin = 0 N.
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A.6.6 Local-vs-Global Optimum

We follow up the previous non-convex example with another edge case where the non-
convex dynamics can be used to provoke a local optimum, and we show how to resolve
this special case. The problem addressed is the pure-vertical translation from hover to
hover, e.g. descending from an initial hover point at 5 m height, to the origin at 0 m,
parameterized with N = 100 nodes, a tolerance of d = 0.1 m, and using the race quad
configuration.

When initialized with upright orientation and linear translation, the solution converges
to a free-fall trajectory, which is a feasible local optimal solution, depicted in Fig. A.14.
However, the optimal solution would exploit the available inputs in addition to the gravity
acceleration, effectively performing a flip to accelerate downwards, before turning upright
to decelerate into a hover state. We can resolve this problem of local optimality by
initializing the problem from a bang-bang point-mass guess. This initial bang-bang guess
exploits the full actuation space to accelerate for tacc = tN/2 towards the end state,
followed by symmetric deceleration phase of equal tdec = tN/2, under the assumption of
no gravity. Essentially, this provides us with an initial guess for our orientation, which
resolves the local optimum and converges to the global solution of performing a flip,
visible in Fig. A.14. This initialization scheme can be applied for arbitrary trajectories
to resolve most local optima.
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Figure A.14: Local and global optimum. Two solutions to travel from a starting point at
5 m height to the origin at 0 m. The left solution is initialized from an upright linear interpolated
guess converging to a locally optimal free-fall descent. In contrast, the right solution is initialized
from a bang-bang acceleration guess, reaching the global optimal solution of performing a flip.
Note that the global optimal flip is notably faster (0.808 s), than the locally optimal free fall
(1.212 s).
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Figure A.15: Airsim qualification. The NeurIPS Airsim Qualification 1 track, covered in
tN = 24.11 s, as opposed to the best team’s 30.11 s. The top row depicts the trajectory in xy-
and xy-plane, while the second row depicts the velocity, respectively, plotted over time.

A.6.7 Microsoft AirSim, NeurIPS 2019 Qualification 1

As an additional demonstration, we apply our algorithm on a track from the 2019 NeurIPS
AirSim Drone racing Challenge [139], specifically on the Qualifier Tier 1 setup. We choose
a quadrotor with roughly the same properties, described as the MS configuration in
Tab. A.1. The track is set up with the initial pose and 21 waypoints as defined in the
environment provided in [139]. We use a discretization of N = 3360 nodes and a tolerance
of dtol = 0.1 m. The optimization of such a large state space took ∼ 65 min on a normal
desktop computer.

The original work by [139] provides a simple and conservative baseline performance of
ttotal ≈ 110 s under maximal velocity and acceleration of vmax = 30 m s−1 and amax =

15 m/s2, respectively. However, the best team achieved a time of ttotal = 30.11 s according
to the evaluation page from [139]. Our method generates a trajectory that passes all
waypoints at a mere tN = 24.11 s, visualized in Fig. A.15. Please note that this trajectory
should only serve as a theoretical lower bound on the possibly achievable time given the
model parameters.
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Table A.4: Human Pilot Rankings

Michael Isler

Year Event Ranking

2020
Swiss Drone League Race Luzern 2nd
Highest Drone Race in the World - St. Moritz 1st

2019
Drone Champions League Laax 3rd
Swiss National Team FAI World Championship Shanghai team

2018

Southern Germany Race 3rd
Drag Race Southern Germany 3rd
Swiss Online Freestyle Challenge 2nd
Kamikaze Race 1st
FAI Lausanne 2nd
Swiss Drone League Race St. Gallen 1st
Drone Champions League Rapperswil 3rd
Swiss National Team FAI World Championship Shenzen team
Drag Race at FAI World Championship Shenzen 3rd

2017
Swiss Nationals 2nd
Swiss Indoor Masters 2nd
Drone Night 1st

Timothy Trowbridge

Year Event Ranking

2020 Drone Racing League par

2019

Drone Champions League Season 2nd
Drone Champions League Romania 1st
Drone Champions League Vaduz 2nd
Swiss Drone League Bern 1st
Swiss Drone League Luzern 2nd
Swiss Drone League Basel 1st
Drone Champions League Turin 1st

2018

Drag Race at FAI World Championship Shenzen 1st
Drone Champions League Season 1st
Drone Champions League Zurich 1st
Drone Champions League Brussels 1st
Drone Champions League China 1st
XFly Great Wall of China 1st
Inter Copter Racing Cup 2nd
Thüringen Saison Opening 2nd

2017

Moto Drone St. Gallen 2nd
Drone Champions League Brussels 2nd
Morph X Masters 2nd
Athens Drone GP 1st
Drone Champions League Paris 2nd
UpGreat Drone Race 1st

2016
Danish Drone Nationals 2nd
Drone Night 1st

Entries where the participants competed as part of a team are marked as "team",
while participation with undisclosed results are marked as "par".
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Racing

The version presented here is reprinted, with permission, from:

Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus Cieslewski, Mathias Gehrig,
Manasi Muglikar, and Davide Scaramuzza. “AlphaPilot: Autonomous Drone Racing”. In:
Robotics: Science and Systems (RSS) (2020). url: https://link.springer.com/article/10.
1007/s11370-018-00271-6
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AlphaPilot: Autonomous Drone Racing

Philipp Foehn, Dario Brescianini, Elia Kaufmann, Titus Cieslewski, Mathias

Gehrig, Manasi Muglikar, Davide Scaramuzza

Abstract — This paper presents a novel system for autonomous,
vision-based drone racing combining learned data abstraction, non-
linear filtering, and time-optimal trajectory planning. The system
has successfully been deployed at the first autonomous drone racing
world championship: the 2019 AlphaPilot Challenge. Contrary to
traditional drone racing systems, which only detect the next gate,
our approach makes use of any visible gate and takes advantage of
multiple, simultaneous gate detections to compensate for drift in the
state estimate and build a global map of the gates. The global map
and drift-compensated state estimate allow the drone to navigate
through the race course even when the gates are not immediately
visible and further enable to plan a near time-optimal path through the
race course in real time based on approximate drone dynamics. The
proposed system has been demonstrated to successfully guide the drone
through tight race courses reaching speeds up to 8 m/s and ranked
second at the 2019 AlphaPilot Challenge.
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C.1 Introduction

C.1.1 Motivation

Autonomous drones have seen a massive gain in robustness in recent years and perform
an increasingly large set of tasks across various commercial industries; however, they are
still far from fully exploiting their physical capabilities. Indeed, most autonomous drones
only fly at low speeds near hover conditions in order to be able to robustly sense their
environment and to have sufficient time to avoid obstacles. Faster and more agile flight
could not only increase the flight range of autonomous drones, but also improve their
ability to avoid fast dynamic obstacles and enhance their maneuverability in confined
spaces. Human pilots have shown that drones are capable of flying through complex
environments, such as race courses, at breathtaking speeds. However, autonomous drones
are still far from human performance in terms of speed, versatility, and robustness, so
that a lot of research and innovation is needed in order to fill this gap.

In order to push the capabilities and performance of autonomous drones, in 2019, Lockheed
Martin and the Drone Racing League have launched the AlphaPilot Challenge1,2, an open
innovation challenge with a grand prize of $1 million. The goal of the challenge is to
develop a fully autonomous drone that navigates through a race course using machine
vision, and which could one day beat the best human pilot. While other autonomous
drone races [154, 153] focus on complex navigation, the AlphaPilot Challenge pushes the
limits in terms of speed and course size to advance the state of the art and enter the
domain of human performance. Due to the high speeds at which drones must fly in order
to beat the best human pilots, the challenging visual environments (e.g., low light, motion
blur), and the limited computational power of drones, autonomous drone racing raises
fundamental challenges in real-time state estimation, perception, planning, and control.

C.1.2 Related Work

Autonomous navigation in indoor or GPS-denied environments typically relies on simul-
taneous localization and mapping (SLAM), often in the form of visual-inertial odometry
(VIO) [34]. There exists a variety of VIO algorithms, e.g., [157, 25, 189, 76], that are based
on feature detection and tracking that achieve very good results in general navigation
tasks [48]. However, the performance of these algorithms significantly degrades during
agile and high-speed flight as encountered in drone racing. The drone’s high translational
and rotational velocities cause large optic flow, making robust feature detection and
tracking over sequential images difficult and thus causing substantial drift in the VIO
state estimate [47].

1https://thedroneracingleague.com/airr/
2https://www.nytimes.com/2019/03/26/technology/alphapilot-ai-drone-racing.html
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Figure C.1: Our AlphaPilot drone waiting on the start podium to autonomously race through
the gates ahead.

To overcome this difficulty, several approaches exploiting the structure of drone racing
with gates as landmarks have been developed, e.g., [124, 104, 110], where the drone locates
itself relative to gates. In [124], a handcrafted process is used to extract gate information
from images that is then fused with attitude estimates from an inertial measurement unit
(IMU) to compute an attitude reference that guides the drone towards the visible gate.
While the approach is computationally very light-weight, it struggles with scenarios where
multiple gates are visible and does not allow to employ more sophisticated planning and
control algorithms which, e.g., plan several gates ahead. In [104], a convolutional neural
network (CNN) is used to retrieve a bounding box of the gate and a line-of-sight-based
control law aided by optic flow is then used to steer the drone towards the detected
gate. While this approach is successfully deployed on a real robotic system, the generated
control commands do not account for the underactuated system dynamics of the quadrotor,
constraining this method to low-speed flight. The approach presented in [110] also relies
on relative gate data but has the advantage that it works even when no gate is visible.
In particular, it uses a CNN to directly infer relative gate poses from images and fuse
the results with a VIO state estimate. However, the CNN does not perform well when
multiple gates are visible as it is frequently the case for drone racing.

Assuming knowledge of the platform state and the environment, there exist many ap-
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proaches which can reliably generate feasible trajectories with high efficiency. The most
prominent line of work exploits the quadrotor’s underactuated nature and the resulting
differentially-flat output states [149, 160], where trajectories are described as polynomials
in time. Other approaches additionally incorporate obstacle avoidance [258, 84] or per-
ception constraints [59, 221]. However, in the context of drone racing, specifically the
AlphaPilot Challenge, obstacle avoidance is often not needed, but time-optimal planning
is of interest. There exists a handful of approaches for time-optimal planning [94, 131,
204, 71]. However, while [94, 131] are limited to 2D scenarios and only find trajectories
between two given states, [204] requires simulation and real-world data obtained on the
track, and the method of [71] is not applicable due to computational constraints.

C.1.3 Contribution

The approach contributed herein builds upon the work of [110] and fuses VIO with a
robust CNN-based gate corner detection using an extended Kalman filter (EKF), achieving
high accuracy at little computational cost. The gate corner detections are used as static
features to compensate for the VIO drift and to align the drone’s flight path precisely
with the gates. Contrary to all previous works [124, 104, 110], which only detect the
next gate, our approach makes use of any gate detection and even profits from multiple
simultaneous detections to compensate for VIO drift and build a global gate map. The
global map allows the drone to navigate through the race course even when the gates
are not immediately visible and further enables the usage of sophisticated path planning
and control algorithms. In particular, a computationally efficient, sampling-based path
planner (see e.g., [121], and references therein) is employed that plans near time-optimal
paths through multiple gates ahead and is capable of adjusting the path in real time if
the global map is updated.

This paper extends our previous work [68] by including a more detailed elaboration
on our gate corner detection in Sec. C.4 with an ablation study in Sec. C.8.1, further
details on the fusion of VIO and gate detection in Sec. C.5, and a description of the path
parameterization in Sec. C.6, completed by an ablation study on the planning horizon
length in Sec. C.8.3.

C.2 AlphaPilot Race Format and Drone

C.2.1 Race Format

From more than 400 teams that participated in a series of qualification tests including
a simulated drone race [88], the top nine teams were selected to compete in the 2019
AlphaPilot Challenge. The challenge consists of three qualification races and a final
championship race at which the six best teams from the qualification races compete for
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the grand prize of $1 million. Each race is implemented as a time trial competition in
which each team is given three attempts to fly through a race course as fast a possible
without competing drones on the course. Taking off from a start podium, the drones
have to autonomously navigate through a sequence of gates with distinct appearances
in the correct order and terminate at a designated finish gate. The race course layout,
gate sequence, and position are provided ahead of each race up to approximately ±3 m

horizontal uncertainty, enforcing teams to come up with solutions that adapt to the
real gate positions. Initially, the race courses were planned to have a lap length of
approximately 300 m and required the completion up to three laps. However, due to
technical difficulties, no race required to complete multiple laps and the track length at
the final championship race was limited to about 74 m.

C.2.2 Drone Specifications

All teams were provided with an identical race drone (Fig. C.1) that was approximately
0.7 m in diameter, weighed 3.4 kg, and had a thrust-to-weight ratio of 1.4. The drone was
equipped with a NVIDIA Jetson Xavier embedded computer for interfacing all sensors and
actuators and handling all computation for autonomous navigation onboard. The sensor
suite included two ±30° forward-facing stereo camera pairs (Fig. C.2), an IMU, and a
downward-facing laser rangefinder (LRF). All sensor data were globally time stamped by
software upon reception at the onboard computer. Detailed specifications of the available
sensors are given in Table C.1. The drone was equipped with a flight controller that
controlled the total thrust f along the drone’s z-axis (see Fig. C.2) and the angular
velocity, ω = (ωx, ωy, ωz), in the body-fixed coordinate frame B.

C.2.3 Drone Model

Bold lower case and upper case letters will be used to denote vectors and matrices,
respectively. The subscripts in IpCB = IpB − IpC are used to express a vector from
point C to point B expressed in frame I. Without loss of generality, I is used to represent
the origin of frame I, and B represents the origin of coordinate frame B. For the sake

Table C.1: Sensor specifications.

Sensor Model Rate Details

Cam Leopard Imaging
IMX 264 60 Hz

global shutter, color
resolution: 1200× 720

IMU Bosch BMI088 430 Hz
range: ±24g, ±34.5 rad/s
resolution: 7e-4g, 1e-3rad/s

LRF Garmin
LIDAR-Lite v3 120 Hz

range: 1-40 m
resolution: 0.01 m
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eIx eIy

eIz
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Figure C.2: Illustration of the race drone with its body-fixed coordinate frame B in blue and a
camera coordinate frame C in red.

of readability, the leading subscript may be omitted if the frame in which the vector is
expressed is clear from context.

The drone is modelled as a rigid body of mass m with rotor drag proportional to its
velocity acting on it [105]. The translational degrees-of-freedom are described by the
position of its center of mass, pB = (pB,x, pB,y, pB,z), with respect to an inertial frame I
as illustrated in Fig. C.2. The rotational degrees-of-freedom are parametrized using a unit
quaternion, qIB, where RIB = R(qIB) denotes the rotation matrix mapping a vector
from the body-fixed coordinate frame B to the inertial frame I [216]. A unit quaternion,
q, consists of a scalar qw and a vector q̃ = (qx, qy, qz) and is defined as q = (qw, q̃) [216].
The drone’s equations of motion are

mp̈B = RIBfe
B
z −RIBDRᵀ

IBvB −mg, (C.1)

q̇IB =
1

2

[
0

ω

]
⊗ qIB, (C.2)

where f and ω are the force and bodyrate inputs, eBz = (0, 0, 1) is the drone’s z-axis
expressed in its body-fixed frame B, D = diag(dx, dy, 0) is a constant diagonal matrix
containing the rotor drag coefficients, vB = ṗB denotes the drone’s velocity, g is gravity
and ⊗ denotes the quaternion multiplication operator [216]. The drag coefficients were
identified experimentally to be dx = 0.5 kg/s and dy = 0.25 kg/s.

C.3 System Overview

The system is composed of five functional groups: Sensor interface, perception, state
estimation, planning and control, and drone interface (see Fig. C.3). In the following, a
brief introduction to the functionality of our proposed perception, state estimation, and
planning and control system is given.
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Figure C.3: Overview of the system architecture and its main components. All components
within a dotted area run in a single thread.

C.3.1 Perception

Of the two stereo camera pairs available on the drone, only the two central forward-facing
cameras are used for gate detection (see Section C.4) and, in combination with IMU
measurements, to run VIO. The advantage is that the amount of image data to be
processed is reduced while maintaining a very large field of view. Due to its robustness,
multi-camera capability and computational efficiency, ROVIO [25] has been chosen as
VIO pipeline. At low speeds, ROVIO is able to provide an accurate estimate of the
quadrotor vehicle’s pose and velocity relative to its starting position, however, at larger
speeds the state estimate suffers from drift.

C.3.2 State Estimation

In order to compensate for a drifting VIO estimate, the output of the gate detection
and VIO are fused together with the measurements from the downward-facing laser
rangefinder (LRF) using an EKF (see Section C.5). The EKF estimates a global map of
the gates and, since the gates are stationary, uses the gate detections to align the VIO
estimate with the global gate map, i.e., compensates for the VIO drift. Computing the
state estimate, in particular interfacing the cameras and running VIO, introduces latency
in the order of 130 ms to the system. In order to be able to achieve a high bandwidth of
the control system despite large latencies, the vehicle’s state estimate is predicted forward
to the vehicle’s current time using the IMU measurements.

C.3.3 Planning and Control

The global gate map and the latency-compensated state estimate of the vehicle are used
to plan a near time-optimal path through the next N gates starting from the vehicle’s
current state (see Section C.6). The path is re-planned every time (i)) the vehicle passes
through a gate, (ii)) the estimate of the gate map or (iii)) the VIO drift are updated
significantly, i.e., large changes in the gate positions or VIO drift. The path is tracked
using a cascaded control scheme (see Section C.7) with an outer proportional-derivative
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(PD) position control loop and an inner proportional (P) attitude control loop. Finally,
the outputs of the control loops, i.e., a total thrust and angular velocity command, are
sent to the drone.

C.3.4 Software Architecture

The NVIDIA Jetson Xavier provides eight CPU cores, however, four cores are used to run
the sensor and drone interface. The other four cores are used to run the gate detection,
VIO, EKF state estimation, and planning and control, each in a separate thread on a
separate core. All threads are implemented asynchronously to run at their own speed,
i.e., whenever new data is available, in order to maximize data throughput and to reduce
processing latency. The gate detection thread is able to process all camera images in
real time at 60 Hz, whereas the VIO thread only achieves approximately 35 Hz. In order
to deal with the asynchronous nature of the gate detection and VIO thread and their
output, all data is globally time stamped and integrated in the EKF accordingly. The
EKF thread runs every time a new gate or LRF measurement is available. The planning
and control thread runs at a fixed rate of 50 Hz. To achieve this, the planning and control
thread includes the state prediction which compensates for latencies introduced by the
VIO.

C.4 Gate Detection

To correct for drift accumulated by the VIO pipeline, the gates are used as distinct
landmarks for relative localization. In contrast to previous CNN-based approaches to gate
detection, we do not infer the relative pose to a gate directly, but instead segment the four
corners of the observed gate in the input image. These corner segmentations represent
the likelihood of a specific gate corner to be present at a specific pixel coordinate. To
represent a value proportional to the likelihood, the maps are trained on Gaussians of
the corner projections. This allows the detection of an arbitrary amount of gates, and
allows for a more principled inclusion of gate measurements in the EKF through the
use of reprojection error. Specifically, it exhibits more predictable behavior for partial
gate observations and overlapping gates, and allows to suppress the impact of Gaussian
noise by having multiple measurements relating to the same quantity. Since the exact
shape of the gates is known, detecting a set of characteristic points per gate allows to
constrain the relative pose. For the quadratic gates of the AlphaPilot Challenge, these
characteristic points are chosen to be the inner corner of the gate border (see Fig. C.4,
4th column). However, just detecting the four corners of all gates is not enough. If just
four corners of several gates are extracted, the association of corners to gates is undefined
(see Fig. C.4, 3rd row, 2nd column). To solve this problem, we additionally train our
network to extract so-called Part Affinity Fields (PAFs), as proposed by [35]. These are
vector fields, which, in our case, are defined along the edges of the gates, and point from
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Figure C.4: The gate detection module returns sets of corner points for each gate in the input
image (fourth column) using a two-stage process. In the first stage, a neural network transforms
an input image, Iw×h×3 (first column), into a set of confidence maps for corners, Cw×h×4 (second
column), and Part Affinity Fields (PAFs) [35], Ew×h×(4·2) (third column). In the second stage,
the PAFs are used to associate sets of corner points that belong to the same gate. For visualization,
both corner maps, C (second column), and PAFs, E (third column), are displayed in a single
image each. While color encodes the corner class for C, it encodes the direction of the 2D vector
fields for E. The yellow lines in the bottom of the second column show the six edge candidates of
the edge class (TL, TR) (the TL corner of the middle gate is below the detection threshold), see
Section C.4.2. Best viewed in color.

one corner to the next corner of the same gate, see column three in Figure C.4. The
entire gate detection pipeline consists of two stages: 1) predicting corner maps and PAFs
by the neural network, 2) extracting single edge candidates from the network prediction
and assembling them to gates. In the following, both stages are explained in detail.

C.4.1 Stage 1: Predicting Corner Maps and Part Affinity Fields

In the first detection stage, each input image, Iw×h×3, is mapped by a neural network
into a set of NC = 4 corner maps, Cw×h×NC , and NE = 4 PAFs, Ew×h×(NE ·2). Predicted
corner maps as well as PAFs are illustrated in Figure C.4, 2nd and 3rd column. The
network is trained in a supervised manner by minimizing the Mean-Squared-Error loss
between the network prediction and the ground-truth maps. In the following, ground-truth
maps for both map types are explained in detail.

Corner Maps

For each corner class, j ∈ Cj , Cj := {TL,TR ,BL ,BR }, a ground-truth corner map, C∗j (s),
is represented by a single-channel map of the same size as the input image and indicates
the existence of a corner of class j at pixel location s in the image. The value at location
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s ∈ I in C∗j is defined by a Gaussian as

C∗j (s) = exp

(
−
‖s− s∗j‖22

σ2

)
, (C.3)

where s∗j denotes the ground truth image position of the nearest corner with class j. The
choice of the parameter σ controls the width of the Gaussian. We use σ = 7 pixel in our
implementation. Gaussians are used to account for small errors in the ground-truth corner
positions that are provided by hand. Ground-truth corner maps are generated for each
individual gate in the image separately and then aggregated. Aggregation is performed
by taking the pixel-wise maximum of the individual corner maps, as this preserves the
distinction between close corners.

Part Affinity Fields

We define a PAF for each of the four possible classes of edges, defined by its two connecting
corners as (k, l) ∈ EKL := {(TL,TR ), (TR,BR ), (BR,BL ), (BL,TL )}. For each edge class,
(k, l), the ground-truth PAF, E∗(k,l)(s), is represented by a two-channel map of the same
size as the input image and points from corner k to corner l of the same gate, provided
that the given image point s lies within distance d of such an edge. We use d = 10 pixel
in our implementation. Let G∗ be the set of gates g and S(k,l),g be the set of image points
that are within distance d of the line connecting the corner points s∗k and s∗l belonging to
gate g. Furthermore, let vk,l,g be the unit vector pointing from s∗k to s∗l of the same gate.
Then, the part affinity field, E∗(k,l)(s), is defined as:

E∗(k,l)(s) =

{
vk,l,g if s ∈ S(k,l),g, g ∈ G∗

0 otherwise.
(C.4)

As in the case of corner maps, PAFs are generated for each individual gate in the image
separately and then aggregated. In case a point s lies in S(k,l),g of several gates, the vk,l,g
of all corresponding gates are averaged.

C.4.2 Stage 2: Corner Association

At test time, discrete corner candidates, sj , for each corner class, j ∈ Cj , are extracted
from the predicted corner map using non-maximum suppression and thresholding. For
each corner class, there might be several corner candidates, due to multiple gates in the
image or false positives. These corner candidates allow the formation of an exhaustive set
of edge candidates, {(sk, sl)}, see the yellow lines in Fig. C.4. Given the corresponding
PAF, E(k,l)(s), each edge candidate is assigned a score which expresses the agreement of
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that candidate with the PAF. This score is given by the line integral

S((sk, sl)) =

∫ u=1

u=0
E(k,l)(s(u)) · sl − sk‖sl − sk‖

du, (C.5)

where s(u) lineraly interpolates between the two corner candidate locations sk and sl. In
practice, S is approximated by uniformly sampling the integrand.

The line integral S is used as metric to associate corner candidates to gate detections.
The goal is to find the optimal assignment for the set of all possible corner candidates
to gates. As described in [35], finding this optimal assignment corresponds to a K-
dimensional matching problem that is known to be NP-Hard [246]. Following [35],
the problem is simplified by decomposing the matching problem into a set of bipartite
matching subproblems. Matching is therefore performed independently for each edge
class. Specifically, the following optimization problem represents the bipartite matching
subproblem for edge class (k, l):

maxS(k,l) =
∑
k∈Dk

∑
l∈Dl

S((sk, sl)) · zkl (C.6)

s.t. ∀k ∈ Dk,
∑
l∈Dl

zkl ≤ 1 , (C.7)

∀l ∈ Dl,
∑
k∈Dk

zkl ≤ 1 , (C.8)

where S(k,l) is the cumulative matching score andDk, Dl denote the set of corner candidates
for edge class (k, l). The variable zkl ∈ {0, 1} indicates whether two corner candidates are
connected. Equations (C.7) and (C.8) enforce that no two edges share the same corner.
Above optimization problem can be solved using the Hungarian method [118], resulting
in a set of edge candidates for each edge class (k, l).

With the bipartite matching problems being solved for all edge classes, the pairwise
associations can be extended to sets of associated edges for each gate.

C.4.3 Training Data

The neural network is trained in a supervised fashion using a dataset recorded in the real
world. Training data is generated by recording video sequences of gates in 5 different
environments. Each frame is annotated with the corners of all gates visible in the image
using the open source image annotation software labelme3, which is extended with KLT-
Tracking for semi-automatic labelling. The resulting dataset used for training consists of
28k images and is split into 24k samples for training and 4k samples for validation. At
training time, the data is augmented using random rotations of up to 30° and random

3https://github.com/wkentaro/labelme
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changes in brightness, hue, contrast and saturation.

C.4.4 Network Architecture and Deployment

The network architecture is designed to optimally trade-off between computation time
and accuracy. By conducting a neural network architecture search, the best performing
architecture for the task is identified. The architecture search is limited to variants of
U-Net [198] due to its ability to perform segmentation tasks efficiently with a very limited
amount of labeled training data. The best performing architecture is identified as a 5-level
U-Net with [12, 18, 24, 32, 32] convolutional filters of size [3, 3, 3, 5, 7] per level and a final
additional layer operating on the output of the U-Net containing 12 filters. At each layer,
the input feature map is zero-padded to preserve a constant height and width throughout
the network. As activation function, LeakyReLU with α = 0.01 is used. For deployment
on the Jetson Xavier, the network is ported to TensorRT 5.0.2.6. To optimize memory
footprint and inference time, inference is performed in half-precision mode (FP16) and
batches of two images of size 592× 352 are fed to the network.

C.5 State Estimation

The non-linear measurement models of the VIO, gate detection, and laser rangefinder are
fused using an EKF [106]. In order to obtain the best possible pose accuracy relative to
the gates, the EKF estimates the translational and rotational misalignment of the VIO
origin frame, V , with respect to the inertial frame, I, represented by pV and qIV , jointly
with the gate positions, pGi , and gate heading, ϕIGi . It can thus correct for an imprecise
initial position estimate, VIO drift, and uncertainty in gate positions. The EKF’s state
space at time tk is xk = x(tk) with covariance P k described by

xk =
(
pV , qIV ,pG0

, ϕIG0 , . . . ,pGN−1
, ϕIGN−1

)
. (C.9)

The drone’s corrected pose, (pB, qIB), can then be computed from the VIO estimate,
(pVB, qVB), by transforming it from frame V into the frame I using (pV , qIV) as

pB = pV +RIV · pVB, qIB = qIV · qVB. (C.10)

All estimated parameters are expected to be time-invariant but subject to noise and drift.
This is modelled by a Gaussian random walk, simplifying the EKF process update to:

xk+1 = xk, P k+1 = P k + ∆tkQ, (C.11)

where Q is the random walk process noise. For each measurement zk with noise R the
predicted a priori estimate, x−k , is corrected with measurement function, h(x−k ), and
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Kalman gain, Kk, resulting in the a posteriori estimate, x+
k , as

Kk = P−kH
ᵀ
k

(
HkP

−
kH

ᵀ
k +R

)−1
,

x+
k = x−k +Kk

(
zk − h(x−k )

)
, (C.12)

P+
k = (I −KkHk)P

−
k ,

with h(x−k ), the measurement function with Jacobian Hk.

However, the filter state includes a rotation quaternion constrained to unit norm, ‖qIV‖
!

=

1. This is effectively an over-parameterization in the filter state space and can lead to
poor linearization as well as underestimation of the covariance. To apply the EKFs
linear update step on the over-parameterized quaternion, it is lifted to its tangent space
description, similar to [74]. The quaternion qIV is composed of a reference quaternion,
qIVref

, which is adjusted after each update step, and an error quaternion, qVrefV , of which
only its vector part, q̃VrefV , is in the EKF’s state space. Therefore we get

qIV = qIVref
· qVrefV qVrefV =

[√
1− q̃ᵀVrefV · q̃VrefV

q̃VrefV

]
(C.13)

from which we can derive the Jacobian of any measurement function, h(x), with respect
to qIV by the chain rule as

∂

∂q̃VrefV
h(x) =

∂

∂qIV
h(x) · ∂qIV

∂q̃VrefV
(C.14)

=
∂

∂q̃IV
h(x) · [qIVref

]×

 −q̃ᵀVrefV√
1−q̃ᵀVrefV ·q̃VrefV

I3×3

 (C.15)

where we arrive at (C.15) by using (C.13) in (C.14) and use [qIVref
]× to represent the

matrix resulting from a lefthand-side multiplication with qIVref
.

C.5.1 Measurement Modalities

All measurements up to the camera frame time tk are passed to the EKF together with
the VIO estimate, pVB,k and qVB,k, with respect to the VIO frame V. Note thate the
VIO estimate is assumed to be a constant parameter, not a filter state, which vastly
simplifies derivations ad computation, leading to an efficient yet robust filter.

Gate Measurements

Gate measurements consist of the image pixel coordinates, sCoij , of a specific gate corner.
These corners are denoted with top left and right, and bottom left and right, as in j ∈ Cj ,
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Cj := {TL,TR ,BL ,BR } and the gates are enumerated by i ∈ [0, N − 1]. All gates are of
equal width, w, and height, h, so that the corner positions in the gate frame, Gi, can be
written as pGiCoij = 1

2 (0,±w,±h). The measurement equation can be written as the
pinhole camera projection [229] of the gate corner into the camera frame. A pinhole
camera maps the gate corner point, pCoij , expressed in the camera frame, C, into pixel
coordinates as

hGate(x) = sCoij =
1

[pCoij ]z

[
fx 0 cx
0 fy cy

]
pCoij , (C.16)

where [·]z indicates the scalar z-component of a vector, fx and fy are the camera’s focal
lengths and (cx, cy) is the camera’s optical center. The gate corner point, pCoij , is given
by

pCoij =Rᵀ
IC

(
pGi +RIGipGiCoj − pC

)
, (C.17)

with pC and RIC being the transformation between the inertial frame I and camera
frame C,

pC =pV +RIV (pVB +RVBpBC) , (C.18)

RIC =RIVRVBRBC , (C.19)

where pBC and RBC describe a constant transformation between the drone’s body frame
B and camera frame C (see Fig. C.2). The Jacobian with respect to the EKF’s state
space is derived using the chain rule,

∂

∂x
hGate(x) =

∂hGate(x)

∂pCoij (x)
·
∂pCoij (x)

∂x
, (C.20)

where the first term representing the derivative of the projection, and the second term
represents the derivative with respect to the state space including gate position and
orientation, and the frame alignment, which can be further decomposed using (C.14).

Gate Correspondences

The gate detection (see Figure C.4) provides sets of m measurements,

S î = {sCoîj0, . . . , sCoîjm−1},

corresponding to the unknown gate î at known corners j ∈ Cj . To identify the correspon-
dences between a detection set S î and the gate Gi in our map, we use the square sum of
reprojection error. For this, we first compute the reprojection of all gate corners, sCoij ,
according to (C.16) and then compute the square error sum between the measurement
set, S î, and the candidates, sCoij . Finally, the correspondence is established to the gate
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Gi which minimizes the square error sum, as in

argmin
i∈[0,N−1]

∑
sCo

îj
∈S î

(sCoîj − sCoij )
ᵀ(sCoîj − sCoij ). (C.21)

Laser Rangefinder Measurement

The drone’s laser rangefinder measures the distance along the drones negative z-axis
to the ground, which is assumed to be flat and at a height of 0 m. The measurement
equation can be described by

hLRF(x) =
[pB]z

[RIBeBz ]z
=

[pV +RIVpV B]z
[RIVRVBeBz ]z

. (C.22)

The Jacobian with respect to the state space is again derived by ∂hLRF
∂pV

and ∂hLRF
∂qIV

and
further simplified using (C.14).

C.6 Path Planning

For the purpose of path planning, the drone is assumed to be a point mass with bounded
accelerations as inputs. This simplification allows for the computation of time-optimal
motion primitives in closed-form and enables the planning of approximate time-optimal
paths through the race course in real time. Even though the dynamics of the quadrotor
vehicle’s acceleration cannot be neglected in practice, it is assumed that this simplification
still captures the most relevant dynamics for path planning and that the resulting paths
approximate the true time-optimal paths well. In order to facilitate the tracking of the
approximate time-optimal path, polynomials of order four are fitted to the path which
yield smoother position, velocity and acceleration commands, and can therefore be better
tracked by the drone.

In the following, time-optimal motion primitives based on the simplified dynamics are
first introduced and then a path planning strategy based on these motion primitives is
presented. Finally, a method to parameterize the time-optimal path is introduced.

C.6.1 Time-Optimal Motion Primitive

The minimum times, T ∗x , T ∗y and T ∗z , required for the vehicle to fly from an initial state,
consisting of position and velocity, to a final state while satisfying the simplified dynamics
p̈B(t) = u(t) with the input acceleration u(t) being constrained to u ≤ u(t) ≤ u are
computed for each axis individually. Without loss of generality, only the x-axis is
considered in the following. Using Pontryagin’s maximum principle [24], it can be shown
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Figure C.5: Example time-optimal motion primitive starting from rest at the origin to a random
final position with non-zero final velocity. The velocities are constrained to ±7.5m/s and the
inputs to ±12m/s2. The dotted lines denote the per-axis time-optimal maneuvers.

that the optimal control input is bang-bang in acceleration, i.e., has the form

u∗x(t) =

{
ux, 0 ≤ t ≤ t∗,
ux, t∗ < t ≤ T ∗x ,

(C.23)

or vice versa with the control input first being ux followed by ux. In order to control
the maximum velocity of the vehicle, e.g., to constrain the solutions to ranges where the
simplified dynamics approximate the true dynamics well or to limit the motion blur of
the camera images, a velocity constraint of the form vB ≤ vB(t) ≤ vB can be added, in
which case the optimal control input has bang-singular-bang solution [144]

u∗x(t) =


ux, 0 ≤ t ≤ t∗1,
0, t∗1 < t ≤ t∗2,
ux, t∗2 < t ≤ T ∗x ,

(C.24)

or vice versa. It is straightforward to verify that there exist closed-form solutions for the
minimum time, T ∗x , as well as the switching times, t∗, in both cases (C.23) or (C.24).

Once the minimum time along each axis is computed, the maximum minimum time,
T ∗ = max(T ∗x , T

∗
y , T

∗
z ), is computed and motion primitives of the same form as in (C.23)

or (C.24) are computed among the two faster axes but with the final time constrained to
T ∗ such that trajectories along each axis end at the same time. In order for such a motion
primitive to exist, a new parameter α ∈ [0, 1] is introduced that scales the acceleration
bounds, i.e., the applied control inputs are scaled to αux and αux, respectively. Fig. C.5
depicts the position and velocity of an example time-optimal motion primitive.
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C.6.2 Sampling-Based Receding Horizon Path Planning

The objective of the path planner is to find the time-optimal path from the drone’s current
state to the final gate, passing through all the gates in the correct order. Since the previ-
ously introduced motion primitive allows the generation of time-optimal motions between
any initial and any final state, the time-optimal path can be planned by concatenating
a time-optimal motion primitive starting from the drone’s current (simplified) state to
the first gate with time-optimal motion primitives that connect the gates in the correct
order until the final gate. This reduces the path planning problem to finding the drone’s
optimal state at each gate such that the total time is minimized. To find the optimal path,
a sampling-based strategy is employed where states at each gate are randomly sampled
and the total time is evaluated subsequently. In particular, the position of each sampled
state at a specific gate is fixed to the center of the gate and the velocity is sampled
uniformly at random such the velocity lies within the constraints of the motion primitives
and the angle between the velocity and the gate normal does not exceed a maximum
angle, ϕmax It is trivial to show that as the number of sampled states approaches infinity,
the computed path converges to the time-optimal path.

In order to solve the problem efficiently, the path planning problem is interpreted as a
shortest path problem. At each gate,M different velocities are sampled and the arc length
from each sampled state at the previous gate is set to be equal to the duration, T ∗, of the
time-optimal motion primitive that guides the drone from one state to the other. Due to
the existence of a closed-form expression for the minimum time, T ∗, setting up and solving
the shortest path problem can be done very efficiently using, e.g., Dijkstra’s algorithm [24]
resulting in the optimal path p∗(t). In order to further reduce the computational cost,
the path is planned in a receding horizon fashion, i.e., the path is only planned through
the next N gates.

C.6.3 Path Parameterization

Due to the simplifications of the dynamics that were made when computing the motion
primitives, the resulting path is infeasible with respect to the quadrotor dynamics (C.1)
and (C.2) and thus is impossible to be tracked accurately by the drone. To simplify the
tracking of the time-optimal path, the path is approximated by fourth order polynomials
in time. In particular, the path is divided into multiple segments of equal arc length. Let
t ∈ [tk, tk+1) be the time interval of the k-th segment. In order to fit the polynomials,
p̄k(t), to the k-th segment of the time-optimal path, we require that the initial and final
position and velocity are equal to those of the time-optimal path, i.e.,

p̄k(tk) = p∗(tk), p̄k(tk+1) = p∗(tk+1), (C.25)
˙̄pk(tk) = ṗ∗(tk), ˙̄pk(tk+1) = ṗ∗(tk+1), (C.26)
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and that the positions at t = (tk+1 − tk) /2 coincide as well:

p̄k

(
tk+1 + tk

2

)
= p∗

(
tk+1 + tk

2

)
. (C.27)

The polynomial parameterization p̄k(t) of the k-th segment is then given by

p̄k(t) = a4,ks
4 + a3,ks

3 + a2,ks
2 + a1,ks+ a0,k, (C.28)

with s = t− tk being the relative time since the start of k-th segment. The velocity and
acceleration required for the drone to track this polynomial path can be computed by
taking the derivatives of (C.28), yielding

˙̄pk(t) = 4a4,ks
3 + 3a3,ks

2 + 2a2,ks+ a1,k, (C.29)
¨̄pk(t) = 12a4,ks

2 + 6a3,ks+ 2a2,k. (C.30)

C.7 Control

This section presents a control strategy to track the near time-optimal path from Section
C.6. The control strategy is based on a cascaded control scheme with an outer position
control loop and an inner attitude control loop, where the position control loop is designed
under the assumption that the attitude control loop can track setpoint changes perfectly,
i.e., without any dynamics or delay.

C.7.1 Position Control

The position control loop along the inertial z-axis is designed such that it responds to
position errors

pBerr,z = pBref,z − pB,z
in the fashion of a second-order system with time constant τpos,z and damping ratio ζpos,z,

p̈B,z =
1

τ2pos,z
pBerr,z +

2ζpos,z

τpos,z
ṗBerr,z + p̈Bref,z. (C.31)

Similarly, two control loops along the inertial x- and y-axis are shaped to make the
horizontal position errors behave like second-order systems with time constants τpos,xy

and damping ratio ζpos,xy. Inserting (C.31) into the translational dynamics (C.1), the
total thrust, f , is computed to be

f =
[m
(
p̈Bref

+ g
)

+RIBDR
ᵀ
IBvB]z

[RIBeBz ]z
. (C.32)
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1Figure C.6: Top view of the planned (left) and executed (center) path at the championship race,
and an executed multi-lap path at a testing facility (right). Left: Fastest planned path in color,
sub-optimal sampled paths in gray. Center: VIO trajectory as pVB and corrected estimate as pB.

C.7.2 Attitude Control

The required acceleration from the position controller determines the orientation of the
drone’s z-axis and is used, in combination with a reference yaw angle, ϕref, to compute
the drone’s reference attitude. The reference yaw angle is chosen such that the drone’s
x-axis points towards the reference position 5 m ahead of the current position, i.e., that
the drone looks in the direction it flies. A non-linear attitude controller similar to [31]
is applied that prioritizes the alignment of the drone’s z-axis, which is crucial for its
translational dynamics, over the correction of the yaw orientation:

ω =
2 sgn(qw)√
q2w + q2z

T−1att

qwqx − qyqzqwqy + qxqz
qz

 , (C.33)

where qw, qx, qy and qz are the components of the attitude error, q−1IB ⊗ qIBref
, and where

Tatt is a diagonal matrix containing the per-axis first-order system time constants for
small attitude errors.

C.8 Results

The proposed system was used to race in the 2019 AlphaPilot championship race. The
course at the championship race consisted of five gates and had a total length of 74 m. A
top view of the race course as well as the results of the path planning and the fastest
actual flight are depicted in Fig. C.6 (left and center). With the motion primitive’s
maximum velocity set to 8 m/s, the drone successfully completed the race course in a total
time of 11.36 s, with only two other teams also completing the full race course. The drone
flew at an average velocity of 6.5 m/s and reached the peak velocity of 8 m/s multiple
times. Note that due to missing ground truth, Fig. C.6 only shows the estimated and
corrected drone position.
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The system was further evaluated at a testing facility where there was sufficient space for
the drone to fly multiple laps (see Fig. C.6, right), albeit the course consisted of only two
gates. The drone was commanded to pass four times through gate 1 before finishing in
the final gate. Although the gates were not visible to the drone for most of the time, the
drone successfully managed to fly multiple laps. Thanks to the global gate map and the
VIO state estimate, the system was able to plan and execute paths to gates that are not
directly visible. By repeatedly seeing either one of the two gates, the drone was able to
compensate for the drift of the VIO state estimate, allowing the drone to pass the gates
every time exactly through their center. Note that although seeing gate 1 in Fig. C.6
(right) at least once was important in order to update the position of the gate in the
global map, the VIO drift was also estimated by seeing the final gate.

The results of the system’s main components are discussed in detail in the following
subsections, and a video of the results is attached to the paper.

C.8.1 Gate Detection

Architecture Search: Due to the limited computational budget of the Jetson Xavier,
the network architecture was designed to maximize detection accuracy while keeping a low
inference time. To find such architecture, different variants of U-Net [198] are compared.
Table C.2 summarizes the performance of different network architectures. Performance is
evaluated quantitatively on a separate test set of 4k images with respect to intersection
over union (IoU) and precision/recall for corner predictions. While the IoU score only
takes full gate detections into account, the precision/recall scores are computed for each
corner detection. Based on these results, architecture UNet-5 is selected for deployment
on the real drone due to the low inference time and high performance. On the test set,
this network achieves an IoU score with the human-annotated ground truth of 96.4%.
When only analyzing the predicted corners, the network obtains a precision of 0.997 and
a recall of 0.918.

Deployment: Even in instances of strong changes in illumination, the gate detector
was able to accurately identify the gates in a range of 2− 17 m. Fig. C.4 illustrates the
quality of detections during the championship race (1st row) as well as for cases with
multiple gates, represented in the test set (2nd/3rd row). With the network architecture
explained in Section C.4, one simultaneous inference for the left- and right-facing camera
requires computing 3.86 GFLOPS (40 kFLOPS per pixel). By implementing the network
in TensorRT and performing inference in half-precision mode (FP16), this computation
takes 10.5 ms on the Jetson Xavier and can therefore be performed at the camera update
rate.
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Table C.2: Comparison of different network architectures with respect to intersection over union
(IoU), precision (Pre.) and recall (Rec.). The index in the architecture name denotes the number
of levels in the U-Net. All networks contain one layer per level with kernel sizes of [3, 3, 5, 7, 7]
and [12, 18, 24, 32, 32] filters per level. Architectures labelled with ’L’ contain twice the amount
of filters per level. Timings are measured for single input images of size 352x592 on a desktop
computer equipped with an NVIDIA RTX 2080 Ti.

Arch. IoU Pre. Rec. #params latency [s]

UNet-5L 0.966 0.997 0.967 613k 0.106
UNet-5 0.964 0.997 0.918 160k 0.006
UNet-4L 0.948 0.997 0.920 207k 0.085
UNet-4 0.941 0.989 0.862 58k 0.005
UNet-3L 0.913 0.991 0.634 82k 0.072
UNet-3 0.905 0.988 0.520 27k 0.005

C.8.2 State Estimation

Compared to a pure VIO-based solution, the EKF has proven to significantly improve
the accuracy of the state estimation relative to the gates. As opposed to the works by
[124, 104, 110], the proposed EKF is not constrained to only use the next gate, but can
work with any gate detection and even profits from multiple detections in one image.
Fig. C.6 (center) depicts the flown trajectory estimated by the VIO system as pVB and
the EKF-corrected trajectory as pB (the estimated corrections are depicted in gray).
Accumulated drift clearly leads to a large discrepancy between VIO estimate pVB and the
corrected estimate pB . Towards the end of the track at the two last gates this discrepancy
would be large enough to cause the drone to crash into the gate. However, the filter
corrects this discrepancy accurately and provides a precise pose estimate relative to
the gates. Additionally, the imperfect initial pose, in particular the yaw orientation, is
corrected by the EKF while flying towards the first gate as visible in the zoomed section
in Fig. C.6 (center).

C.8.3 Planning and Control

Fig. C.6 (left) shows the nominally planned path for the AlphaPilot championship race,
where the coloured line depicts the fastest path along all the sampled paths depicted in
gray. In particular, a total of M = 150 different states are sampled at each gate, with
the velocity limited to 8 m/s and the angle between the velocity and the gate normal
limited to ϕmax = 30°. During flight, the path is re-planned in a receding horizon fashion
through the next N = 3 gates (see Fig. C.6, center). It was experimentally found that
choosing N ≥ 3 only has minimal impact of the flight time comapred to planning over all
gates, while greatly reducing the computational cost. Table C.3 presents the trade-offs
between total flight time and computation cost for different horizon lengths N for the
track shown in Fig. C.6 (left). In addition, Table C.3 shows the flight and computation
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Table C.3: Total flight time vs. computation time averaged over 100 runs. The percentage in
parenthesis is the computation time with respect to the computational time for the full track.

Ngates flight time computation time

1 9.593,5 s 1.66 ms 2.35%

2 9.291,3 s 18.81 ms 26.56%

3 9.270,9 s 35.74 ms 50.47%

4 9.266,7 s 53.00 ms 74.84%

5 (full track) 9.262,2 s 70.81 ms 100%

CPC [71] (full track) 6.520 s 4.62 · 105ms 6524%

time of the time-optimal trajectory generation from [71], which significantly outperforms
our approach but is far away from real-time execution with a computation time of 462 s for
a single solution. Online replanning would therefore not be possible, and any deviations
from the nominal track layout could lead to a crash.

Please also note that the evaluation of our method is performed in Matlab on a laptop
computer, while the final optimized implementation over N = 3 gates achieved replanning
times of less than 2 ms on the Jetson Xavier and can thus be done in every control
update step. Fig. C.6 (right) shows resulting path and velocity of the drone in a multi-lap
scenario, where the drone’s velocity was limited to 6 m/s. It can be seen that drone’s
velocity is decreased when it has to fly a tight turn due to its limited thrust.

C.9 Discussion and Conclusion

The proposed system managed to complete the course at a velocity of 5 m/s with a success
rate of 100% and at 8 m/s with a success rate of 60%. At higher speeds, the combination
of VIO tracking failures and no visible gates caused the drone to crash after passing
the first few gates. This failure could be caught by integrating the gate measurements
directly in a VIO pipeline, tightly coupling all sensor data. Another solution could be
a perception-aware path planner trading off time-optimality against motion blur and
maximum gate visibility.

The advantages of the proposed system are (i)) a drift-free state estimate at high speeds,
(ii)) a global and consistent gate map, and (iii)) a real-time capable near time-optimal
path planner. However, these advantages could only partially be exploited as the races
neither included multiple laps, nor had complex segments where the next gates were not
directly visible. Nevertheless, the system has proven that it can handle these situations
and is able to navigate through complex race courses reaching speeds up to 8 m/s and
completing the championship race track of 74 m in 11.36 s.
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While the 2019 AlphaPilot Challenge pushed the field of autonomous drone racing, in
particularly in terms of speed, autonomous drones are still far away from beating human
pilots. Moreover, the challenge also left open a number of problems, most importantly
that the race environment was partially known and static without competing drones or
moving gates. In order for autonomous drones to fly at high speeds outside of controlled
or known environments and succeed in many more real-world applications, they must be
able to handle unknown environments, perceive obstacles and react accordingly. These
features are areas of active research and are intended to be included in future versions of
the proposed drone racing system.
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D Faster than FAST:
GPU-Accelerated Frontend for
High-Speed VIO

The version presented here is reprinted, with permission, from:

Balazs Nagy, Philipp Foehn, and Davide Scaramuzza. “Faster than FAST: GPU-
Accelerated Frontend for High-Speed VIO”. in: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS). 2020
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Faster than FAST: GPU-Accelerated
Frontend for High-Speed VIO

Balázs Nagy, Philipp Foehn, Davide Scaramuzza

Abstract — The recent introduction of powerful embedded graphics
processing units (GPUs) has allowed for unforeseen improvements in
real-time computer vision applications. It has enabled algorithms to run
onboard, well above the standard video rates, yielding not only higher
information processing capability, but also reduced latency. This work
focuses on the applicability of efficient low-level, GPU hardware-specific
instructions to improve on existing computer vision algorithms in the
field of visual-inertial odometry (VIO). While most steps of a VIO
pipeline work on visual features, they rely on image data for detection
and tracking, of which both steps are well suited for parallelization.
Especially non-maxima suppression and the subsequent feature selection
are prominent contributors to the overall image processing latency.
Our work first revisits the problem of non-maxima suppression for
feature detection specifically on GPUs, and proposes a solution that
selects local response maxima, imposes spatial feature distribution, and
extracts features simultaneously. Our second contribution introduces an
enhanced FAST feature detector that applies the aforementioned non-
maxima suppression method. Finally, we compare our method to other
state-of-the-art CPU and GPU implementations, where we always
outperform all of them in feature tracking and detection, resulting
in over 1000fps throughput on an embedded Jetson TX2 platform.
Additionally, we demonstrate our work integrated into a VIO pipeline
achieving a metric state estimation at ∼200fps.
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Figure D.1: Our method introduces a novel non-maxima suppression scheme exploiting GPU
parallelism and low-level instructions, applied for GPU-optimized feature detection and tracking.
We demonstrate a feature detection and tracking rate of over 1000fps on an embedded Jetson
TX2 platform.

D.1 Introduction

D.1.1 Motivation

As technology became increasingly affordable, vision-based motion tracking has proven
its capabilities not only in robotics applications, such as autonomous cars and drones but
also in virtual (VR) and augmented (AR) reality and mobile devices. While visual-inertial
odometry (VIO) prevails with its low cost, universal applicability, and increasing maturity
and robustness, it is still computationally expensive and introduces significant latency.
This latency impacts e.g. VR/AR applications by introducing motion sickness, or robotic
systems by constraining their control performance. The latter is especially true for
aerial vehicles with size and weight constraints limiting the available computation power
while requiring real-time execution of the VIO and control pipeline to guarantee stable,
robust, and safe operation. Besides latency, one may also witness a disconnect between
the available sensor capabilities (both visual and inertial) and the actual information
processing capabilities of mobile systems. While off-the-shelf cameras are capable of
capturing images above 100fps, many algorithms and implementations are not able to
handle visual information at this rate. By lowering the frame processing times, we can
simultaneously minimize latency and also reduce the neglected visual-inertial information.

In particular, embedded systems on drones or AR/VR solutions cannot rely on offline
computations and therefore need to use all their available resources efficiently. Various
heterogeneous embedded solutions were introduced, offering a range of computing ar-
chitectures for better efficiency. There are three popular heterogeneous architectures: i)
the first one uses a central processing unit (CPU) with a digital signal processor (DSP),
and therefore it is restricted in its set of tasks; ii) the second one combines a CPU with
programmable logic (e.g. FPGA), which is versatile but increases development time; iii)
the third solution is the combination of a CPU with a GPU, which is not only cost-efficient
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but also excels in image processing tasks since GPUs are built for highly parallel tasks.

On these grounds, our work investigates feature detection and tracking on CPU-GPU
platforms, where we build up the image processing from the GPU hardware’s perspective.
We present a feasible work-sharing between the CPU and a GPU to achieve significantly
lower overall processing times.

D.1.2 Related Work

We recapitulate previous approaches according to the building blocks of a VIO pipeline
front-end: feature detection, non-maxima suppression, and feature tracking.

Feature Detection

Over the years, feature detection has not changed significantly. Pipelines commonly use
Harris [91], Shi-Tomasi [205], or FAST features [200] with one of three FAST corner scores.
Harris and Shi-Tomasi are less sensitive to edges and are also widely used independently
as corner detectors. They both share the same principles, but their metric of cornerness
differs. ORB [202], as an extension to FAST has also appeared in VIO pipelines, presenting
a reasonable, real-time alternative to SIFT [135] and SURF [20]. Amongst the above,
undoubtedly FAST presents the fastest feature detector. Two variations were proposed
from the original authors in the form of FAST [200] and FAST-ER [201], where the latter
greatly improves on repeatability while still maintaining computational efficiency. To the
best of our knowledge, the fastest CPU implementation of the FAST detector is KFAST
[178], which showcases more than 5× speedup over the original implementation. On the
GPU, we are aware of two optimized implementations within OpenCV [30] and ArrayFire
[249]. Both employ lookup tables to speed up the decision process for determining a
point’s validity: the latter uses a 64-kilobyte lookup table, while the former an 8-kilobyte
one. Although both solutions provide fast cornerness decision, neither of them guarantees
spatial feature distribution as they both stop extracting features once the feature count
limit is reached.

Non-Maxima Suppression

Non-maxima suppression can be considered a local maximum search within each can-
didate’s Moore neighborhood. The Moore neighborhood of each pixel-response is its
square-shaped surrounding with a side length of (2n+ 1). Suppression of interest point
candidates has been studied extensively in [168, 185], and recently, they have also been
reviewed in machine learning applications [179]. The complexity of the proposed algo-
rithms is determined based on the number of comparisons required per interest point.
This algorithm requires (2n+ 1)2 comparisons, as the comparisons follow the raster scan
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order. Förstner and Gülch [78] proposed performing the comparisons in spiral order.
Theoretically, the number of comparisons does not change, however, the actual number
of comparisons plummeted, because most candidates can be suppressed in a smaller
3x3 neighborhood first, and only a few points remain. Neubeck [168] proposed several
algorithms to push down the number of comparisons to almost 1 in the worst-case. Pham
[185] proposed another two algorithms (scan-line, and quarter-block partitioning) that
drove down the number of comparisons below 2, not only for larger (n ≥ 5) but also for
small neighborhood sizes (n < 5). All these approaches first try to perform reduction
to a local maximum candidate in a smaller neighborhood, then perform neighborhood
verification for only the selected candidates. However, they do not ensure any (spatial)
feature distribution and possibly output a large set of feature candidates.

Feature tracking

Feature tracking may be divided into three different categories: i) feature matching, ii)
filter-based tracking, and iii) differential tracking. Feature matching i) applies feature
extraction on each frame followed by feature matching, which entails a significant overhead.
Moreover, the repeatability of the feature detector may adversely influence its robustness.
However, there are well-known pipelines, opting for this approach [157, 123, 162]. [25]
tracks the features using filters ii), which contain the feature location in its state (e.g. via
bearing vectors), and follows features with consecutive prediction and update steps. The
third differential iii) approaches aim to directly use the pixel intensities and minimize a
variation of the photometric error. From the latter kind, the Lucas-Kanade tracker [136,
15, 14] became ubiquitous in VIO pipelines [75, 76] due to its efficiency and robustness.
As it directly operates on pixel intensity patches, GPU adaptations appeared early
on. [251] implements a translational displacement model on the GPU with intensity-
gain estimation. [115, 100] go even further: they propose an affine-photometric model
coupled with an inertial measurement unit (IMU) initialization scheme: the displacement
model follows an affine transformation, in which the parameters are affected by the IMU
measurements between consecutive frames, while the pixel intensities may also undergo
an affine transformation.

D.1.3 Contributions

Our work introduces a novel non-maxima suppression building upon [78] but also exploiting
low-level GPU instruction primitives, completed by a GPU-optimized implementation of
the FAST detector with multiple scores. Our method combines the feature detection and
non-maxima suppression, guaranteeing uniform feature distribution over the whole image,
which other approaches need to perform in an extra step. Additionally, we combine
our frontend with a state-of-the-art VIO bundle-adjustment backend. All contributions
are verified and thoroughly evaluated using the EuRoC dataset [33] on the Jetson
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TX2 embedded platform and a laptop GPU. Throughput capabilities of over 1000fps
are demonstrated for feature detection and tracking, and ∼200fps for a VIO pipeline
recovering a metric state estimate.

D.2 Methodology

D.2.1 Preliminaries on parallelization

We briefly introduce the fundamentals of the Compute Unified Device Architecture,
or shortly CUDA, which is a parallel computing platform and programming model
proprietary to NVIDIA. CUDA allows developers to offload the central processing unit,
and propagate tasks to the GPU even for non-image related computations. Latter is
commonly referred to as general-purpose GPU (GPGPU) programming.

The NVIDIA GPU architecture is built around a scalable array of multithreaded streaming
multiprocessors (SMs) [43]. Each SM has numerous streaming processors (SP), that
are lately also called CUDA cores. GPUs usually have 1-20 streaming multiprocessors
and 128-256 streaming processors per SM. In addition to the processing cores, there
are various types of memories available (ordered by proximity to the processing cores):
register file, shared memory, various caches, off-chip device, and host memory.

NVIDIA’s GPGPU execution model introduces a hierarchy of computing units: threads,
warps, thread blocks, and thread grids. The smallest unit of execution is a thread.
Threads are grouped into warps: each warp consists of 32 threads. Warps are further
grouped into thread blocks. One thread block is guaranteed to be executed on the same
SM. Lastly, on top of the execution model is the thread grid. A thread grid is an array of
thread blocks. Thread blocks within a thread grid are executed independently from each
other.

The instruction execution on the GPU needs to be emphasized: every thread in a warp
executes the same instruction in a lock-step basis. NVIDIA calls this execution model
Single Instruction Multiple Threads (SIMT). It also entails, that if/else divergence within
a warp causes serialized execution.

The underlying GPU hardware occasionally undergoes significant revisions, hence the
differences between GPUs need to be tracked. NVIDIA introduced the notion of Compute
Capability accompanied by a codename to denote these differences. With the introduction
of the NVIDIA Kepler GPU microarchitecture, threads within the same warp can read
from each other’s registers with specific instructions. Our work focuses on these warp-level
primitives, more specifically, highly-efficient communication patterns for sharing data
between threads in the same warp. In previous GPU generations, threads needed to
turn to a slower common memory (usually the shared memory) for data sharing, which
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Table D.1: Memory selection for the fastest communication

Execution Unit Execution Unit Fastest Memory

Threads within warp identical SM registers

Warps within thread block identical SM shared memory

Thread blocks any SM global memory

Algorithm 1: Generalized Feature Detection
for Every scale do

for Every pixel within the region of interest (ROI) do
if Coarse Corner Response Function (CCRF) then

Corner Response Function (CRF)
end

end
Non-max. suppression within neighborhood (NMS)

end
• Non-max. suppression within cell (NMS-C)

resulted in significant execution latencies. However, with the introduction of the Kepler
architecture it became possible to perform communication within the warp first, and only
use the slower memory on higher abstractions of execution, i.e. within thread blocks and
then within the thread grid. In Table D.1 we summarized the available fastest memories
for exchanging data between execution blocks on a GPU.

D.2.2 Feature detector overview

GPUs are particularly well-suited for feature detection, which can be considered a stencil
operation amongst the parallel communication patterns. In a stencil operation, each
computational unit accesses an input element (e.g. pixel) and its close neighborhood in
parallel. Therefore, the image can be efficiently divided amongst the available CUDA cores,
such that the memory accesses are coalesced, leading to highly effective parallelization.
For feature detection, the input image is first subsampled to acquire an image pyramid.
Then, for each image resolution, two functions are usually evaluated at each pixel: a
coarse corner response function (CCRF), and a corner response function (CRF). CCRF
serves as a fast evaluation that can swiftly exclude the majority of candidates so that
a slower CRF function only receives candidates that passed the first verification. Once
every pixel has been evaluated within the ROI, non-maxima suppression is applied to
select only the local maxima. We summarized the general execution scheme of feature
detector algorithms in Algorithm 1. It was discovered in [174, 209, 79], that uniform
feature distribution on image frames improves the stability of VIO pipelines. To fulfill
this requirement, [75] and [76] introduced the notion of 2D grid cells: the image is divided
into rectangles with a fixed width and height. Within each cell, there is only one feature
selected - the feature whose CRF score is the highest within the cell. Not only does this
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method distribute the features evenly on the image, but it also imposes an upper limit on
the extracted feature count. This is shown in Algorithm 1, including the augmentation •.

D.2.3 Non-maxima suppression with CUDA

Feature selection within a cell can be understood as a reduction operation, where only the
feature with the maximum score is selected. Moreover, non-maxima suppression within
the neighborhood can also be considered a reduction operation, where one reduces the
corner response to a single-pixel location within finite neighborhoods.

Our approach divides the corner response map into a regular cell grid. Within the grid
on the first pyramid level, cells use a width of an integer multiple of 32, i.e. 32w, because,
on NVIDIA GPU hardware, a warp consists of 32 threads. One line of a cell is referred
to as a cell line, which can be split up into cell line segments with 32 elements. We
restrict the height of the cells to be 2l−1h, where l is the number of pyramid levels utilized
during feature detection. By selecting an appropriate grid configuration l, w, and h, one
can determine the maximum number of features extracted, while maintaining spatial
distribution.

Within one cell line segment, one thread is assigned to process one pixel-response, i.e.
one warp processes one entire cell line segment (32 threads for 32 pixel-responses). While
one warp can process multiple lines, multiple warps within a thread block cooperatively
process consecutive lines in a cell. As the corner response map is stored using a single-
precision floating-point format in a pitched memory layout, the horizontal cell boundaries
perfectly coincide with the L1-cache line boundaries, which maximizes the memory bus
utilization whenever fetching complete cell line segments.

For the simplicity of illustration, a 1:1 warp-to-cell mapping is used in a 32x32 cell. As a
warp reads out the first line of the cell, each thread within the warp, has acquired one
pixel-response. As the next operation, the entire warp starts the neighborhood suppression:
the warp starts spiraling according to [78], and each thread verifies whether the response it
has is the maximum within its Moore neighborhood. Once the neighborhood verification
finishes, a few threads might have suppressed their response. However, no write takes
place at this point, every thread stores its state (response score, and x-y location) in
registers. The warp continues with the next line, and repeats the previous operations:
they read out the corresponding response, and start the neighborhood suppression, and
update their maximum response if the new response is higher than the one in the previous
line. The warp continues this operation throughout all cell lines until it processed the
entire cell. Upon finishing, each thread has its maximum score with the corresponding 2D
location. However, as the 32 threads were processing individual columns, the maximum
is only column-wise. Therefore, the warp needs to perform a warp-level reduction to get
the cell-wise maximum: they reduce the maximum score and location to the first thread

136



D.2 Methodology

Figure D.2: Warp-level communication pattern during cell maximum selection. At the end of
the communication, thread 0 has the valid maximum.

(thread 0) using warp-level shuffle down reduction [50]. The applied communication
pattern is shown in Figure D.2. Thread 0 finally writes the result to global memory.

To speed up reduction, multiple (M) warps process one cell, therefore, after the warp-level
reduction, the maximum is reduced in shared memory. Once all warps within the thread
block wrote their maximum results (score, x-y location) to their designated shared memory
area, the first thread in the block selects the maximum for each cell and writes it to
global memory, finishing the processing of this cell.

During pyramidical feature detection, we maintain only one grid. On level 0 (original
resolution), the above-specified algorithm applies. On lower pyramid levels, we virtually
scale the cell sizes, such that the applicable cell size on level k becomes (32·wk , 2

l−1h
k ). In

case the cell width falls below 32, one warp may process multiple lines: if the consecutive
cell lines still belong to the same grid cell, the warp can analogously perform the warp-level
reduction. Since a lower pyramid level’s resolution is half of its upper layer’s resolution,
we can efficiently recompute where a pixel response falls from lower pyramid levels on the
original grid. That is, when we identify a cell maximum on a lower pyramid level, the 2D
position (x, y) from the lower resolution can be scaled up to (2lx, 2ly).

Looking back at Algorithm 1, our approach combines the regular neighborhood suppression
(NMS) and cell maximum selection (NMS-C) into a single step. It also differs from [168,
185], because we first perform candidate suppression within each thread in parallel, then
reduce the remaining candidates amongst one cell.

D.2.4 FAST feature detector

The FAST feature detector’s underlying idea is simple: for every pixel location in the
original image (excluding a minimum border of 3 pixels on all sides) we perform a segment
test, in which we compare pixel intensities on a Bresenham circle with a radius of 3. This
Bresenham circle gives us 16 pixel-locations around each point (see Figure D.3). We give
labels Lx to these points based on a comparison between the center’s and the actual
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Figure D.3: FAST corner point evaluation with an 8 kilobyte lookup table

point’s intensity.

Given there is a continuous arc of at least N pixels that are labeled either darker or brighter,
the center is considered a corner point. To add more robustness to the comparisons, a
threshold value (ε) is also applied. The comparisons are summarized in (D.1). Both the
number of continuous pixels (N) and the threshold value (ε) are tuning parameters.

Lx =


darker Ix < Icenter − ε
similar Icenter − ε ≤ Ix ≤ Icenter + ε

brighter Icenter + ε < Ix

(D.1)

Avoiding Execution Divergence in FAST Calculation

If each thread performed the comparisons from (D.1) in NVIDIA’s single-instruction-
multiple-threads (SIMT) execution model, the comparison decisions in if/else-instructions
will execute different code blocks. Since all threads execute the same instruction in a warp,
some threads will be inactive during the if -branch and others during the else-branch.
This is called code divergence and reduces the throughput in parallelization significantly,
but it can be resolved with a completely different approach: a lookup table (Figure D.3).

Our approach stores the result of the 16 comparisons as a bit array, which serves as an
index for the lookup table. All possible 16-bit vectors are precalculated: a bit bx is ’1’ if
the pixel intensity on the Bresenham circle Ix is darker/brighter than the center pixel
intensity Icenter, and ’0’ if the pixel intensities are similar. As the result is binary for all
216 vectors, the answers can be stored on 216 bits, i.e. 8 kilobytes. These answers can
be stored by using 4-byte integers, each of which store 32 combinations (25): 11 bits are
used to acquire the address of the integer, and the 5 unused bits then select one bit out
of the 32. If the resulting bit is set, we proceed with the calculation of the corner score.

The literature distinguishes three different types of scores for a corner point: sum of
absolute differences on the entire Bresenham circle (SAD-B); sum of absolute differences
on the continuous arc (SAD-A) [200]; maximum threshold (ε) for which the point is still
considered a corner point (MT) [201]. The corner score is 0 if the segment test fails.
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Our approach compresses the validity of each 16-bit combination into a single bit,
resulting in an 8-kilobyte lookup table, for which the cache-hit ratio is higher than the
work presented in [249]. This results from the increased reuse of each cache line that is
moved into the L1 (and L2) caches, therefore improving the access latency.

D.2.5 Lucas-Kanade Feature Tracker

Our approach deploys the pyramidical approximated simultaneous inverse compositional
Lucas-Kanade algorithm as feature tracker. The Lucas-Kanade [136] algorithm minimizes
the photometric error between a rectangular patch on a template and a new image by
applying a warping function on the image coordinates of the new image. The inverse
compositional algorithm is an extension that improves on the computational complexity
per iteration [15] by allowing to precompute the Hessian matrix and reuse it in every
iteration. The simultaneous inverse compositional Lucas-Kanade adds the estimation of
affine illumination change. However, as the Hessian becomes the function of the appearance
estimates, it cannot be precomputed anymore, which makes this approach even slower
than the original Lucas-Kanade. Therefore, our approach applies the approximated
version, where the appearance parameters are assumed to not change significantly, and
hence the Hessian can be precomputed with their initial estimates [14].

We use a translational displacement model t with affine intensity variation estimation
λ. The complete set of parameters are q = [t,λ]ᵀ = [tx, ty, α, β]ᵀ, where tx, ty are the
translational offsets, while α, β are the affine illumination parameters, resulting in the
warping

W (x, t) =

(
x+ tx
y + ty

)
. (D.2)

The per-feature photometric error that we try to minimize for each feature with respect
to ∆q = [∆t,∆λ] is

min
∑
x∈N

[
T (W (x,∆t))− I(W (x, t))+

(α+ ∆α) · T (W (x,∆t)) + (β + ∆β)

]2
,

(D.3)

where T (x) and I(x) stand for the template image and the current image intensities
at position x, respectively. The vector x iterates through one feature’s rectangular
neighborhood (N ). We can organize the coefficients of the incremental terms into vector
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form as

U(x) =


(1 + α)∂T (x)∂x

∂W (x,t)
∂tx

(1 + α)∂T (x)∂y
∂W (x,t)
∂ty

T (x)

1

 , (D.4)

and the minimization problem can be rewritten as

min
∑
x∈N

[
(1 + α)T (x) + β − I(W (x, t)) +Uᵀ(x)∆q

]2
. (D.5)

After computing the derivative of (D.5) and setting it to zero, the solution to ∆q is found
using the Hessian H by

∆q = H−1
∑
x∈N

Uᵀ(x) [I(W (x, t))− (1 + α)T (x)− β]

H(x) =
∑
x∈N

Uᵀ(x)U(x). (D.6)

For this algorithm, there are two GPU problems that need to be addressed: memory
coalescing and warp divergence. The problems are approached from the viewpoint of VIO
algorithms, where one generally does not track a high number of features (only 50-200),
and these sparse features are also scattered throughout the image, which means that they
are scattered in memory.

This algorithm minimizes the photometric error in a rectangular neighborhood around
each feature on multiple pyramid levels. Consequently, if threads within a warp processed
different features, the memory accesses would be uncoalesced, and given some feature
tracks do not converge or the number of iterations on the same level differs, some threads
within a warp would be idle. To address both of these concerns, one entire warp is
launched for processing one feature. We also opted for rectangular patch sizes that can
be collaboratively processed by warps: on higher resolutions 16x16, on lower resolutions
8x8 pixels. It solves warp divergence since threads within the warp perform the same
number of iterations and they iterate until the same pyramid level. The memory requests
from the warp are also split into fewer memory transactions, as adjacent threads are
processing consecutive pixels or consecutive lines.

Warp-level primitives are exploited in every iteration of the minimization, as we need
to perform a patch-wide reduction: in (D.6) we need to sum a four element vector
U(x)T r(x, t) for every pixel within the patch. One thread processes multiple pixels
within the patch, hence each thread reduces multiple elements into its registers prior to
any communication. Once the entire warp finishes a patch, the threads need to share
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Figure D.4: Warp-level communication pattern during each minimization iteration, after which
each thread has the sum of all individual thread results.

their local results with the rest of the warp to calculate ∆q. This reduction is performed
using the butterfly communication pattern shown in Figure D.4.

The novelty of our approach lies in the thread-to-feature assignment. Approaches presented
in [115, 100] are using a one-to-one assignment, which implies that only large feature-
counts can utilize a large number of threads. This adversely affects latency hiding on
GPUs with smaller feature counts, which is generally applicable to VIO. Our method
speeds up the algorithm by having warps that collaboratively solve feature patches, where
each thread’s workload is reduced, while the used communication medium is the fastest
possible.

D.3 Evaluation

We evaluate in four parts: non-maxima suppression, standalone feature detection, feature
tracking (all on the EuRoC Machine Hall 01 sequence [33], including 3,682 image frames),
and applicability within a VIO pipeline. The full VIO pipeline is implemented with the
bundle-adjustment from [126] and tested on the Machine Hall EuRoC dataset sequences
[33].

D.3.1 Hardware

We performed our experiments on an NVIDIA Jetson TX2 and a laptop computer with
an Intel i7-6700HQ processor and a dedicated NVIDIA 960M graphics card. The Jetson
TX2 was chosen because of its excellent tradeoff between size, weight, and computational
capabilities, where we run all experiments with the platform in max-N performance mode
(all cores and GPU at maximal clock speeds). The properties of the two platforms are
summarized in Table D.2.
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Table D.2: Comparison of GPU evaluation hardware

Tegra X2 960M

GPU Tier embedded notebook
CUDA Capability 6.2 5.0
CUDA Cores 256 640
Maximum GPU Clock 1300 MHz 1176 MHz
Single-precision Performance 665.6 GF/s 1505.28 GF/s
Memory Bandwidth 59.7 GB/s 80 GB/s

D.3.2 Non-Maxima Suppression

The proposed FAST corner response function (ε = 10, N = 10) was used as input to our
non-maxima suppression, run with a grid granularity of 32×32 (l = 1, w = 1, h = 32) and
compared to Förstner’s [78] spiral non-maxima suppression algorithm. The results are
listed in Table D.3, showing a 2× speedup for the embedded Jetson TX2 platform.

D.3.3 Feature detector

Conformance

We verify our feature detection conformance with the original FAST feature detector,
for both suggested score functions: D.5a the sum of the absolute difference between
the center pixel and the contiguous arc; D.5b the maximum threshold value, for which
the point is detected as a corner. As our combined non-maxim suppression selects a
single maximum within each cell, our output only comprises of a subset of the original
implementation’s output. In Figure D.5 we mark features red ◦ which are output from
the original detector, yellow ◦ which are output from both implementations, and blue ◦
false-positives of our detector. Note that there are no false-positives and that our method
returns a well-distributed subset of the original response, rendering additional feature
selection unneccessary,

Table D.3: Comparison of 2D non-maxima suppression kernels on GPU

Tegra X2 960M

NMS method Förstner Ours Förstner Ours

n=1 (3x3) 294.03 µs 141.36 µs 96.81 µs 73.78 µs
n=2 (5x5) 696.57 µs 338.03 µs 245.96 µs 158.93 µs
n=3 (7x7) 1207 µs 604.94 µs 441.59 µs 288.39 µs
n=4 (9x9) 1772 µs 929.82 µs 661.90 µs 450.08 µs
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(a) Sum of absolute differences [200] (b) Maximum threshold value [201]

Figure D.5: Conformance verification with the original FAST detector (◦) and our combined
FAST/NMS (◦ for conforming detections, ◦ for false-positives). Note that there are no false-
positives and that our method returns a well-distributed subset of the original response, therefore
rendering additional feature selection unnecessary. Best viewed in digital paper.

Cache-hit ratio

As mentioned in D.2.4, we expect higher GPU cache-hit ratios during feature detection
with our bit-based CRF lookup table. This reduces the number of global-memory
transactions, resulting in lower kernel execution times. The cache-hit ratios and the
resulting CRF timings are listed in Table D.4.

Execution time breakdown

We split the execution time of pyramidal feature detection (l = 2) into its constituents:
image copy from host to device memory (Upload), creation of an image pyramid where
each subsequent layer halves the resolution of the previous one (Pyramid), corner response
function evaluation (CRF ), non-maxima suppression with cell-maximum selection (NMS ),
and feature grid copy from device memory to host memory (Download).

Table D.4: Timing Comparison of different FAST CRF Scores

Tegra X2 960M

Lookup table byte-based bit-based byte-based bit-based

SAD-B L1 cache-hit rate 83.9 % 89.9 % 68.6 % 77.4 %
CRF kernel 317.3 µs 298.7 µs 141.3 µs 135.9 µs

SAD-A L1 cache-hit rate 83.9 % 89.8 % 68.5 % 77.3 %
CRF kernel 348.4 µs 334.9 µs 158.5 µs 155.1 µs

MT L1 cache-hit rate 84.0 % 91.8 % 71.9 % 82.7 %
CRF kernel 815.1 µs 784.3 µs 410.6 µs 374.8 µs
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Figure D.6: Feature detector execution time breakdown into image upload, pyramid creation,
CRF, NMS, and feature download. Best viewed in color.

Execution time comparison

We compare our feature detection with other publicly available FAST implementations,
summarized in Table D.5. As the publicly available detectors only support single-
scale, we performed these experiments on the original image resolution. Note that our
method not only performs feature extraction but simultaneously applies cell-wise non-
maxima suppression, still achieving superior execution times. As KFAST uses x86-specific
instruction set extensions, while ArrayFire OpenCL was incompatible with our available
packages, these could not be run on the Jetson TX2. The GPU timings include the image
upload and feature list download times as well.

D.3.4 Feature tracker

We timed our feature tracker implementation by varying the total number of simultaneous
feature tracks on both testing platforms, depicted in Figure D.7. We utilized our FAST

Table D.5: FAST feature detector average execution time comparison

Tegra X2 960M

Others (feature detection and NMS)
OpenCV CPU with MT 4.78 ms 2.23 ms
OpenCV CUDA with MT 2.73 ms 1.09 ms
ArrayFire CPU with SAD-A 60.83 ms 36.42 ms
ArrayFire CUDA with SAD-A 1.47 ms 0.51 ms
ArrayFire OpenCL with SAD-A - 0.91 ms
KFAST CPU with MT - 0.63 ms

Ours (feature detection, NMS, and NMS-C)
Ours with SAD-B 1.11 ms 0.28 ms
Ours with SAD-A 1.14 ms 0.30 ms
Ours with MT 1.59 ms 0.52 ms
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Figure D.7: Feature tracker performance comparison over a varying number of tracked features,
with translation, illumination gain and offset estimation, and subsets of those. Best viewed in
color.

with score (ii) as feature detector, and triggered feature re-detection whenever the feature
track count falls below 30% of the actual target. The evaluations include the full affine
intensity and translation estimation, with a total of 4 estimated parameters. We also show
the translation-only estimation, translation-gain, as well as translation-offset estimation.
Note that translation-only estimation is less efficient since it needs more iterations to
converge, as visible in Figure. D.7. Lastly, Table D.6 shows a comparison against
OpenCV’s CPU and GPU implementation, which we outperform by a factor of 2× and
more.

D.3.5 Visual odometry

Lastly, we evaluate the performance of our frontend in combination with a VIO bundle-
adjustment backend. We chose ICE-BA [126] as backend, since it is accurate, efficient
and also achieves extremely fast execution times. We implement two test cases: first, we
run the ICE-BA backend with their proposed frontend as a baseline and then compare
it against our frontend with their backend. Both frontends employ FAST features (our
implementation vs. theirs), a Lucas-Kanade feature tracker with 70 tracked features. We
tuned the original ICE-BA configuration [126] and reduced the local bundle adjustment
(LBA) window size to 15 frames for both cases, while we kept other parameters unchanged.

Table D.6: Feature tracker average execution time comparison, tracking 100 features, re-detection
at 30 features

Tegra X2 i7-6700HQ+960M

OpenCV CPU 1.88 ms 1.38 ms
OpenCV CUDA 3.96 ms 0.74 ms

Ours trans. only 0.96 ms 0.33 ms
Ours trans. & offset 0.90 ms 0.28 ms
Ours trans. & gain 0.91 ms 0.29 ms
Ours trans. & gain & offset 1.01 ms 0.38 ms
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We summarize our findings in Table. D.7, which shows an average speedup factor of 2.25×
of the combined front- and back-end on both platforms, with an average accuracy loss of
0.47%. Our tracking performance on MH_04 and MH_05 is affected by the faster motions
and dark scenes. However, according to [49], most pipelines suffer from largely increased
tracking error on these two sequences. This is due to the relatively dark appearance
combined with fast motions of some scenes in these sequences, introducing higher noise
in feature tracking. The VIO pipeline combining our GPU-accelerated frontend and the
CPU targeted ICE-BA backend allows us to achieve a throughput of ∼200fps on multiple
datasets on the embedded Jetson TX2 platform.

D.4 Conclusion

This work introduces a novel non-maxima suppression exploiting low-level GPU-specific
instruction primitives, complemented by a GPU-accelerated FAST feature detector im-
plementing multiple corner response functions. Our approach is unique in the way it
combines feature detection and non-maxima suppression, not only guaranteeing uniform
feature distribution over an image but also consistently outperforming all other available
implementations in terms of execution speed. The speed improvement for the embedded
computer is more pronounced, as there’s a higher performance penalty for memory inter-
actions than in the case of the laptop GPU. We verified the conformity with the original
FAST detector, analyzed the execution timings on two different platforms considering
corner response functions, non-maxima suppression, and feature tracking on multiple
numbers of features. As opposed to others, our feature tracker utilizes a feature-to-warp
assignment, which speeds up tracking operations in typical VIO scenarios. Finally, we
demonstrate superior speed in combining our frontend with a VIO bundle-adjustment
backend, achieving a metric state estimation throughput of ∼200 frames per second with
high accuracy on an embedded Jetson TX2 platform, providing a real-time, heterogeneous
VIO alternative.

Table D.7: Results of our frontend combined with a VIO backend [126] achieving ∼200fps
throughput on the EuRoC dataset [33]

Average execution time Relative translation error (RMSE)

MH_01 MH_02 MH_03 MH_04 MH_05 MH_01 MH_02 MH_03 MH_04 MH_05

Tegra X2 Original 11.64 ms 12.90 ms 12.91 ms 12.90 ms 12.85 ms 1.08 % 0.71 % 0.40 % 0.81 % 0.50 %
Ours 4.67 ms 4.93 ms 6.41 ms 6.10 ms 5.87 ms 0.86 % 0.90 % 1.40 % 1.85 % 1.19 %

i7-6700HQ+960M Original 4.11 ms 4.28 ms 4.77 ms 4.63 ms 4.64 ms 0.68 % 0.71 % 0.53 % 0.83 % 1.36 %
Ours 1.56 ms 1.74 ms 2.54 ms 2.51 ms 2.06 ms 1.00 % 0.55 % 0.74 % 2.14 % 1.68 %
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The version presented here is reprinted, with permission, from:

Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. “VIMO: Simultane-
ous Visual Inertial Model-based Odometry and Force Estimation”. In: Robotics: Science
and Systems (RSS). 2019
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VIMO: Simultaneous Visual Inertial
Model-based Odometry and Force

Estimation

Barza Nisar, Philipp Foehn, Davide Falanga, Davide Scaramuzza

Abstract — In recent years, many approaches to Visual Inertial
Odometry (VIO) have become available. However, they neither exploit
the robot’s dynamics and known actuation inputs, nor differentiate
between desired motion due to actuation and unwanted perturbation
due to external force. For many robotic applications, it is often essential
to sense the external force acting on the system due to, for example,
interactions, contacts, and disturbances. Adding a motion constraint to
an estimator leads to a discrepancy between the model-predicted motion
and the actual motion. Our approach exploits this discrepancy and
resolves it by simultaneously estimating the motion and the external
force. We propose a relative motion constraint combining the robot’s
dynamics and the external force in a preintegrated residual, resulting in
a tightly-coupled, sliding-window estimator exploiting all correlations
among all variables. We implement our Visual Inertial Model-based
Odometry (VIMO) system into a state-of-the-art VIO approach and
evaluate it against the original pipeline without motion constraints
on both simulated and real-world data. The results show that our
approach increases the accuracy of the estimator up to 29% compared
to the original VIO, and provides external force estimates at no extra
computational cost. To the best of our knowledge, this is the first
approach exploiting model dynamics by jointly estimating motion and
external force. Our implementation will be made available open-source.
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E.1 Introduction

E.1.1 Motivation

Recent advances in robot perception have led to a number of Visual Inertial Odometry
(VIO) systems becoming more robust and accessible solutions for state estimation and
navigation, such as [76, 189, 123, 162, 56, 128, 48]. Although these systems work well
in most conditions, they all neglect the robot’s dynamics and cannot sense forces, such
as contacts and interactions, and disturbances, such as wind and other environmental
influences. Additionally, these approaches do not consider the fundamental distinction
between the desired motion due to actuation and unwanted perturbation due to external
forces. Adding the system dynamics to a VIO system (i)) allows the perception of external
force acting on a robot, and (ii)) adds information to the estimation problem, resulting
in increased accuracy.

Applications such as inspection, grasping, manipulation, and delivery require a robot to
sense interaction or forces, which are often recovered using an estimator loosely-coupled
with an odometry system, as proposed in [237, 250, 203, 145, 11, 231]. Such estimators
introduce latency, computational overhead, and neglect correlation among the estimated
variables and their noise characteristics. This shows the necessity for joint estimation of
motion and external force in a unified approach addressing both, model and sensor noise
characteristics.

On the other hand, VIO approaches on Unmanned Aerial Vehicle (UAV), rely on minimal
sensor configurations, typically consisting of visual and inertial sensors suffering from
additive noise. Thanks to Gaussian filtering theory [106], it is known that additional
knowledge and information improves the estimation performance, especially in the presence
of Gaussian noise. By adding the system dynamics to a VIO estimation problem, we
effectively add information. Intuitively, this additional knowledge allows us to increase
the accuracy of the odometry. However, the pure addition of a motion constraint from the
system dynamics does not account for any external influences, and may lead to a motion
prediction deviating from the actual motion, as depicted in Fig. E.1. Since this would
degrade the estimator performance due to a wrong prior, it highlights the importance of
including external force and jointly estimating all variables.

To the best of our knowledge, we present the first tightly-coupled approach exploiting
the model dynamics while jointly estimating motion and external force. We derive the
resulting motion constraint and formulate a dynamic residual. This residual is added
to a pose-graph formulation of the VIO approach in [189] and is solved using numerical
optimization. The resulting estimator demonstrates up to 29% increased accuracy and
inherent ability to sense external force, opening the door to a number of possible future
research topics and applications. As a call to the community, we want to raise awareness
for the importance of contact-enabled robotics and the need for estimators to provide not
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Figure E.1: Factor-graph of our VIMO approach with inertial, dynamic and force factors. The
red arrows indicate the discrepancy between the dynamic and VIO factors, which is resolved by
including an external force.

only odometry information, but also leverage the robot dynamics to increase accuracy
and sense external forces from contacts and interaction.

E.1.2 Related Work

Previous approaches on external force estimation can be split into two groups: determin-
istic and probabilistic.

Deterministic Approaches

Deterministic approaches estimate external force by subtracting the collective thrust
vector from the inertial measurements [237]. [250, 203] proposed a non-linear force and
torque observer based on the quadrotor’s dynamical model, assuming that an estimate of
the robot state is available from another estimator. These deterministic approaches do
not consider (i)) the thrust input noise, (ii)) the noise in the state, and (iii)) noise and
unknown time-varying bias in the Inertial Measurement Unit (IMU). Hence, deterministic
methods only work appropriately in practice when their inputs and outputs are carefully
processed or when the signal to noise ratio of the used sensor data is very high.

Probabilistic Approaches

Realizing the drawbacks of deterministic force observers, [145] proposed an Unscented
Kalman Filter (UKF) to account for the process and sensors noise and, consequently,
improve the force estimate. Other similar filtering-based external force estimators include
a Kalman filter [11] and UKF [231]. These methods can be classified as loosely-coupled,
since they use the state estimate from a separate estimator [1, 231], and then fuse this
estimate with their prediction from the UAV’s dynamic model in a separate estimation step.
Loosely-coupled estimators do not consider correlations among all estimated variables,
which may lead to inaccuracies [123]. Moreover, the external force is estimated in an
additional fusion step, which may introduce latency and extra computation cost.
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Extension to Sliding Window Smoother

A widely used state estimator for UAVs is Visual Inertial Odometry (VIO) based on
sliding-window smoothing [189] with IMU preintegration [74] to make the optimization
problem computationally tractable in real time. IMU preintegration was first proposed
in [138] and later modified in [74] to address the manifold structure of the rotation
group. High-rate IMU measurements are typically integrated between image frames to
form a single relative motion constraint. IMU preintegration theory reparameterizes
this constraint to remove the dependence of integrated IMU measurements on previous
state estimates. This avoids repeated integration when the state estimates change during
each iteration of the optimization. [9] combined the idea of incorporating dynamic
factors for localization of UAVs from [230] with the preintegration scheme from [74] to
develop a model-based visual-inertial state estimator similar to the one proposed in our
work, but without considering external forces. [9] showed that in a smoothing-based
VIO pipeline, the dynamic residual in combination with the IMU residual acts as an
additional source of acceleration information, which adds robustness to state estimation,
especially in slow speed flights, when accelerometer measurements have low signal-to-noise
ratio. While [9] chose to model air drag but ignored external forces in the dynamic
model of the quadrotor, our work includes external forces and estimates them together
with the robot state. An implication of not modelling external disturbances, such as
wind, in model-aided state-estimation problems was studied in [1]. In the presence of
wind or external forces, the estimator from [9] can tend to wrongly adjust the IMU
biases due to the mismatch between sensor measurements and vehicle dynamics and
therefore only works in a disturbance-free environment, as confirmed by the authors. [117]
proposed to use Dynamic Differential Programming to estimate the state, parameters,
and disturbances (forces) in a synthetic planar motion example, assuming perfect data
association, velocity and landmark position measurement without real-world applications.
Their approach is significantly simplified by modelling landmark position measurements,
instead of realistic camera projection measurements. Differently from [117], our method
extends an optimization-based VIO framework with motion factors to simultaneously
estimate state and external force in real time on real-world data. To the best of our
knowledge, there is no precedent of a tightly-coupled or smoothing-based method that
jointly estimates robot states and 3-dimensional external forces.

E.1.3 Contribution

This work extends an optimization-based VIO in [123, 189, 74] with a residual term
integrating the dynamic model of the quadrotor. Our main contribution is the derivation
of this residual term from a motion constraint enforced by the model dynamics including
external force, enabling a VIO framework to jointly estimate this force in addition to
the robot state and IMU bias. Our approach works as a tightly-coupled estimator, using
visual-inertial measurements, and the collective thrust input. Since current smoothing-
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based VIO systems offer higher accuracy compared to filtering-based methods, we employ
non-linear optimization as estimation strategy.

Inspired from IMU preintegration [74], the high-rate thrust inputs are preintegrated,
resulting in dynamic factors used as residuals between consecutive camera frames. A
factor graph representation of the VIO problem with dynamic factors is depicted in
Fig E.1. The dynamic factors represent relative motion constraints similar to the IMU
factors but with a different model and source of measurement. In our work, we exploit
this redundant motion representation to estimate external force. The dynamic residual
is implemented into VINS-mono [189], an open-source sliding-window monocular VIO
framework. VINS-Mono was chosen because of its availability, real-time capability, and
requirement for only one camera and an IMU. We show on real and simulated data that
the proposed estimator compared to VINS-mono, not only increases the accuracy of the
estimates (up to 29%) but also offers external force estimates without increasing the
computation time. Our approach can be implemented analogously on other robots, such
as fixed-wings, manipulators and mobile ground robots.

E.1.4 Structure of this paper

The model-based VIO problem is described in Sec. E.2, followed by the preintegration
of the dynamic residual in Sec. E.3. We report our experiments in Sec. E.4 and the
limitations in Sec. E.5. Finally the paper is concluded in Sec. E.6.

E.2 Problem Formulation

E.2.1 Notation

All coordinate frames used are depicted in Fig. E.2. The quadrotor pose is the body-fixed
frame described in world frame. The IMU frame corresponds to the body frame, attached
to the center of mass of the vehicle. The world frame is denoted by [ ]w, the body frame
by [ ]b and the camera frame by [ ]c, while a hat [̂ ] represents noisy measurements. The
robot state at the time tk is defined as

xk = [pwbk ,v
w
bk
,qwbk ,bak ,bωk ], k ∈ [0, n] (E.1)

comprised of position pwbk , velocity vwbk and Hamilton quaternion qwbk encoding the rotation
of the body frame with respect to the world frame, and accelerometer and gyroscope
biases bak ,bωk in the IMU body frame. n is the number of the most recent keyframes in
the optimization window, where the nth frame is the latest frame that does not need to
be a keyframe. The sliding window optimization variables are given by

X = [l1, · · · , lm,x0, f
b
e0 ,x1, · · · , f ben−1

,xn] (E.2)
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Figure E.2: Quadrotor scheme with world, body and camera frame indicated.

where m is the total number of features in the sliding window and li is the inverse depth
of the ith feature as in [189]. The total mass normalised external force f bek is expressed
in body frame and experienced by the quadrotor from the time of k to k + 1 image i.e.
during [tk, tk+1). If the duration between consecutive image frames is small, f bek will be a
good approximation of the instantaneous force experienced at tk.

E.2.2 Dynamic Residual

To include the model dynamics and external force in a non-linear optimization, we
formulate a dynamic residual ekd(x

k
, f bek ,xk+1

, ẑbkbk+1
), with the preintegrated measurements

ẑbkbk+1
. The full non-linear optimization problem which solves for the maximum aposteriori

estimate of X is formulated as

min
X

n−1∑
k=0

∥∥∥ekd(xk, f bek ,xk+1, ẑ
bk
bk+1

)
∥∥∥2
Wk

d

+ JV IO(X , ẑbkbk+1
) (E.3)

where JV IO contains the sum of prior residual ep, the visual residual ev of all visible
landmark reprojections, and the inertial residual es comprising of the preintegrated
measurements. As proposed in [189] we summarize it into:

JV IO =
n∑
k=0

∑
j∈Jk

ρ

(∥∥∥ej,kv ∥∥∥2
Wv

)
+
n−1∑
k=0

∥∥∥eks∥∥∥2
Wk

s

+
∥∥∥ekp∥∥∥2 . (E.4)

Jk is the set of visible landmarks in frame k, while ekv is robustified by the Huber-norm
ρ(x) =

(√
1 + (x/δ)2 − 1

)
δ2. The reader can refer to [189] for the derivation of JV IO.

In the next section, we formulate the dynamic residual ekd as a function of the robot
states and external forces at times [tk, tk+1] and preintegrated thrust inputs and IMU
measurements ẑbkbk+1

. Additionally, we derive the weight Wk
d for the Mahalanobis norm of

ekd by propagating the covariance from the measurement noise. While the formulation so
far was robot-agnostic, we now focus on the quadrotor model.
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E.3 Preintegration of Quadrotor Dynamics

E.3.1 Model Dynamics

In the dynamical model we consider the evolution of position and velocity of the quadrotor
subject to three forces: collective rotor thrust Tb

t , external forces f bet , and gravity gw =

[0, 0,−9.81]Tm s−2. The translational dynamics of the quadrotor is given by the following
equations:

ṗwbt = vwbt v̇wbt = R(qwbt)
(
Tb
t + f bet

)
+ gw (E.5)

where R(qwbt) is the rotation matrix corresponding to the rotation from body to world
frame. Since we do not know the dynamics of external force, we assume it to be a
Gaussian variable fet = N (0, σ2f ). This allows the framework to distinguish between
slowly walking accelerometer biases and incidental external forces.

Preintegration of the system dynamics requires separation of the residual terms dependent
on optimization variables from the terms dependent on the measurement. The rotational
dynamics of the quadrotor is not considered here, since the control torques can not be
separated from their dependency on the optimization variables rendering preintegration
ineffective.

E.3.2 Preintegration of Dynamic Factors

In this section we derive the preintegration of the dynamic factors. The integration of
(E.5) requires the evolution of rotation, which is provided by the IMU’s rotation model
q̇wbt = 1

2q
w
bt
⊗ [0,ωbt ]

ᵀ where ⊗ is the quaternion multiplication and ωb is the angular
velocity of the body expressed in the body frame. The involved noisy measurements
are the biased angular velocity ω̂bt = ωbt + bωt + ηω from the IMU and the collective
rotor thrust T̂b

t = Tb
t + ηT . As in [189], the gyroscope noise is considered as Gaussian

ηω ∼ N (0,σ2
ω) and its bias as random walk ḃωt = ηbω with ηbω ∼ N (0,σ2

bω
). Since

neither the magnitude nor the direction of the actual thrust is known precisely, we assume
Gaussian noise in the thrust as ηT ∼ N (0,σ2

T ). The vehicle state can be propagated
between two frames over time interval ∆tk = tk+1 − tk by integrating the thrust and
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gyroscope measurements:

pwbk+1
= pwbk + vwbk∆tk +

1

2
gw∆t2k

+

∫ ∫ tk+1

tk

Rw
bτ

(
T̂b
τ + f beτ − ηT

)
dτ2

vwbk+1
= vwbk + gw∆tk +

∫ tk+1

tk

Rw
bτ

(
T̂b
τ + f beτ − ηT

)
dτ

qwbk+1
= qwbk ⊗

∫ tk+1

tk

1

2
Ω
(
ω̂bτ − bωτ − ηω

)
qbkbτ dτ

(E.6)

where: Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0

 . (E.7)

To make the integration of the measurements independent of the states at frame k, we
group the terms containing measurements in α̂bkbk+1

, β̂
bk
bk+1

, γ̂bkbk+1
, and change the reference

frame from world to body frame as done in IMU preintegration [74]:

α̂bkbk+1
=

∫ ∫ tk+1

tk

Rbk
bτ

(
T̂b
τ − ηT

)
dτ2

β̂
bk
bk+1

=

∫ tk+1

tk

Rbk
bτ

(
T̂b
τ − ηT

)
dτ

γ̂bkbk+1
=

∫ tk+1

tk

1

2
Ω
(
ω̂bτ − bωτ − ηω

)
γ̂bkbτ dτ.

(E.8)

We then derive the prediction of the terms in (E.8) from the model equations in (E.6) to
form the factors

αbkbk+1
= Rbk

w

(
pwbk+1

− pwbk − vwbk∆tk −
1

2
gw∆t2k

)
− 1

2
f bek∆t2k

βbkbk+1
= Rbk

w

(
vwbk+1

− vwbk − gw∆tk

)
− f bek∆tk

γbkbk+1
= qbkw ⊗ qwbk+1

.

(E.9)
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E.3.3 Dynamic Residual

Now we can combine (E.8) and (E.9) into the dynamic residual between frames bk and
bk+1, which also includes the zero-mean prior on external forces.

ekd =

α
bk
bk+1
− α̂bkbk+1

βbkbk+1
− β̂bkbk+1

f bek

 Wk
d =

[
Pbk −1
bk+1[0:5]

0

0 wfI

]
(E.10)

Finally, the weight of the residual can be formulated by the inverse of the covariance in
α̂bkbk+1

and β̂
bk
bk+1

extracted from Pbk
bk+1

(derived in Sec. E.3.4) and a diagonal weight wf
for the external force zero-mean prior.

It is important to note that these preintegrated terms still depend on the gyroscope bias.
This means that each time an optimization iteration changes the bias estimate slightly,
we need to repropagate the measurements. To avoid this computationally expensive
repropagation, we will adopt the solution proposed in [74], and explained in Sec. E.3.5.

E.3.4 Propagation Algorithm

We start the propagation from an initial condition of α̂bkbk = β̂
bk
bk

= 03×1 and γ̂bkbk = [1,03×1].
The Euler integration over timestep δti is computed by

α̂bki+1 = α̂bki + β̂
bk
i δti +

1

2
R(γ̂bki )Tb

iδt
2
i (E.11)

β̂
bk
i+1 = β̂

bk
i + R(γ̂bki )Tb

iδti (E.12)

γ̂bki+1 = γ̂bki ⊗
[

1
1
2(ωmi − b̄ωk)δti

]
(E.13)

To achieve optimal linearization accuracy, the algorithm is run at the rate of the fastest
available measurement, typically the IMU rate. The covariance Pbk

bk+1
is derived by

linearizing the error δz = [δα, δβ, δθ, δbω]ᵀ and noise η = [ηT ,ηω,ηbω ]ᵀ dynamics
between integration steps as

zbki+1 = Aiz
bk
i + Gi

ηTηω
ηbω

 γbkt ≈ γ̂bkt ⊗
[

1
1
2δθ

bk
t

]
(E.14)

where δθ is the minimal perturbation around the mean of γ. Finally, Pbk
bk+1

is linearly

propagated from Pbk
bk

= 0 by

Pbk
i+1 = AiP

bk
i AT

i + GiQGT
i (E.15)
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with the linearization Ai =
∂zbki+1

∂zbki
and Gi =

∂zbki+1

∂η .

E.3.5 Bias Correction

The first-order Jacobian matrix Jbk+1
of zbkbk+1

with respect to zbkbk can be computed
recursively by Ji+1 = AiJi starting from the initial Jacobian of Jbk = I. The preintegrated
terms can then be corrected by their first order approximation with respect to the change
in gyroscope bias δbωk = bωk − b̄ωk from the initial estimate b̄ωk as follows:

α̂bkbk+1
← α̂bkbk+1

+ Jαbωδbωk Jαbω =
∂αbkbk+1

∂bωk

β̂
bk
bk+1
← β̂

bk
bk+1

+ Jβbωδbωk Jβbω =
∂βbkbk+1

∂bωk
. (E.16)

E.3.6 Marginalization

We adapt the marginalization strategy proposed in [189], such that when the second last
frame in the window is a keyframe, we marginalize out the oldest keyframe’s state and
external force fe0 . The corresponding visual, inertial, and thrust measurements of the
marginalized states are converted into a prior. If the second last frame is not a keyframe,
its state, external force and corresponding visual measurements are dropped, while the
preintegrated IMU and thrust measurements are kept and continued to be preintegrated
till the last frame.

E.4 Experiments

We perform 3 types of experiments: E.4.1: simulation based experiments; E.4.2: evaluation
on the Blackbird dataset [8] with real pose, inertial, and rotor speed measurements but
synthetic camera frames; E.4.3 real-world experiments.

E.4.1 Simulation

Experiment Setup

To generate repeatable data in a fully controlled environment, we used the RotorS
simulator from [80], a Micro-Aerial Vehicle Simulator using Gazebo in ROS. We used a
forward looking camera with 752× 480 image resolution. The base simulation vehicle was
Hummingbird from [80] according to which the onboard IMU was corrupted with noise
of σω = 0.004rad/s

√
Hz for the gyroscope, σa = 0.1m/s2

√
Hz for the accelerometer, and

a bias random walk of σbω = 0.000038rad/s2
√

Hz for the gyroscope, and σba = 0.00004
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[m/s3
√

Hz] for the accelerometer. The tuning parameters σT and wf were hand-tuned
and then kept the same across all of the experiments. The dynamic residual was
implemented in VINS-Mono with a maximum number of 150 features tracked per frame.
For a fair comparison, no loop closure was applied. The estimator is run on a 2.5 GHz

Intel Core i7 CPU. VINS-Mono processes frames and provides estimates at 10 Hz, with
IMU measurements sampled at 900 Hz, thrust inputs at 150 Hz, and camera images
at 40 Hz. An external force is applied programmatically in the simulation, therefore
its ground truth is known. We acquired simulated datasets for two trajectory shapes:
trajectory 1 is 73.7 m long and is generated by arbitrarily choosing waypoints (Figs. E.3a
and E.3b); trajectory 2 is helical eight (Figs. E.3e and E.3f) given by formulation
p(θ) = [lx sin 2θ, ly cos θ, h2π (sin θ − θ)] with lx = 2 m ly = 4 m and height h = 3.2 m. In
the first set of experiments, the quadrotor flies undisturbed at speeds of [1, 2, 2.5, 4, 5]m s−1,
while in the second set external forces act on the vehicle flying at [1, 2, 2.5]m s−1. In all
the experiments, the reference heading was set to sinusoidally change with a magnitude
of 30°. We first compare the performance of our approach (VIMO) against VINS-Mono in
terms of accuracy and computation times. Finally, we compare the quality of the external
force estimate against the estimate obtained from a naive approach.

Comparison with VINS-Mono

Fig. E.3 shows plots comparing simulation performance of VINS-Mono with VIMO on
the two trajectory shapes flown at 2.5 m/s top speed and disturbed with external forces.
This scenario represents the worst performance of VIMO in comparison with VINS-Mono
on trajectory 1 and an average performance for trajectory 2, as visible from Tab. E.1.
The plots were generated and the absolute and relative errors were computed using the
open source trajectory evaluation toolbox for VIO pipelines [256]. For all the experiments,
we align all the estimated states to the ground truth using posyaw trajectory alignment
method of the toolbox. The top and side view of the estimated trajectories by VINS-Mono
and VIMO almost overlap and are very close to the ground truth. For this worst-case
scenario, the relative translation error for VIMO is less than or similar to the error for
VINS-Mono, while the relative yaw errors for VIMO is slightly higher than VINS-Mono.
We report all measured RMSE and computation time for VINS-Mono and VIMO in
Table E.1, together with the percentage decrease in RMSE of VIMO compared to VINS-
mono. The maximum increase in accuracy is ∼ 40%, experienced at a speed of 1 m/s in
random trajectory, without external forces, while one outlying experiment (trajectory 1,
with forces at 2.5 m s−1) showed a decrease of accuracy. Overall, we achieve a decrease in
translational RMSE of ∼ 15%, and a decrease in rotational RMSE ∼ 25% in the simulated
experiments. In general, the addition of dynamic residuals excels especially in scenarios
of low signal-to-noise ratio in the IMU data, which occur at low accelerations. While we
could tune the parameters σT and wf to increase the accuracy of individual experiments,
we wanted to fairly evaluate our estimator’s performance without tuning between scenarios
to accurately represent real-world applications. In addition to increasing the accuracy,
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Figure E.3: Comparison between VINS — (green), VIMO — (ours, blue) and ground truth —
(purple) on a random trajectory (top) and a helical eight trajectory (bottom) at 2.5 m s−1 with
external forces applied. This configuration depicts the worst performance of VIMO compared
with VINS-Mono. The two left columns show the estimated trajectories aligned with the ground
truth. The two right columns summarize the relative translation and yaw error statistics over
trajectory segments. Boxes indicate the middle two quartiles while whiskers denote upper and
lower quartiles and the center line indicates the median.

it can be observed in Tab. E.1 that our approach does not increase the average solving
time, but keeps it nearly equal to VINS-Mono.

Evaluation of External Force Estimate

In this section we compare VIMO’s external force estimate against the estimate obtained
from a naive approach and the ground truth. We compute a naive deterministic estimate as
f̃et = âbt−T̂b

t by simply subtracting the mass normalised thrust T̂b
t from the accelerometer

measurements âbt . Fig E.4 shows plots of force estimates obtained for the different

Table E.1: Comparison between performance of VINS and VIMO.

trans. RMSE (m) rot. RMSE (deg) avg solve time (ms) max solve time (ms)
top speed (m/s) VINS VIMO % decrease VINS VIMO % decrease VINS VIMO VINS VIMO

Trajectory 1: 73.7 m
without external forces

1.0 0.066 0.039 40.9 1.40 0.57 59.3 42.0 40.9 52.1 54.7
2.0 0.093 0.073 21.5 0.69 0.64 7.2 39.9 39.9 61.8 63.3
2.5 0.085 0.076 10.6 0.60 0.56 6.7 38.5 38.7 50. 49.7
4.0 0.038 0.033 13.2 0.49 0.36 26.5 37.9 38.0 49.1 50.5
5.0 0.068 0.062 8.8 0.66 0.47 28.8 38.3 38.3 51.1 53.8

Trajectory 1: 73.7 m
with external forces

1.0 0.105 0.089 15.2 1.81 0.75 58.6 42.0 40.7 52.2 54.2
2.0 0.057 0.051 10.5 0.75 0.61 18.7 39.6 39.7 50.8 55.5
2.5 0.055 0.059 - 7.3 0.71 0.69 2.8 39.3 38.8 59.7 51.0

Trajectory 2: 65.8 m
without external forces

1.0 0.228 0.189 17.1 1.45 1.12 22.8 40.7 40.9 54.0 60.7
2.0 0.147 0.143 2.7 0.67 0.42 37.3 39.7 39.1 52.6 51.8
2.5 0.203 0.158 22.2 0.74 0.48 35.1 39.3 38.5 77.2 54.4
4.0 0.085 0.068 20.0 0.81 0.65 19.8 38.3 38.0 50.5 57.4
5.0 0.073 0.061 16.4 0.72 0.48 33.3 38.2 38.0 51.8 61.6

Trajectory 2: 65.8 m
with external forces

1.0 0.162 0.154 4.9 1.29 1.00 22.5 40.8 40.9 55.6 61.8
2.0 0.157 0.136 13.4 0.74 0.62 16.2 40.2 38.8 84.5 58.7
2.5 0.094 0.061 35.1 0.64 0.52 18.8 39.5 38.5 52.1 61.7
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Figure E.4: Comparison between external force estimates from VIMO — (pink), the naive
approach — (green) and calculated ground truth — (blue) on the random trajectory (top,
a - c) and the helical-eight trajectory (bottom, d - f). The external force estimate consists of
air drag in body x- and y-axis and 2 external forces applied at t = 10 s and t = 32 s for the top
experiment and t = 47 s and t = 68 s for the bottom experiment.

trajectory shapes flown at 2.5 m/s top speed. In both the experiments, we disturb the
quadrotor at its center of mass by 2 external forces for 2 seconds each, one after the
other, in all three body axes. The ground truth of the external force is computed as a
sum of mass normalised external disturbance measured by the force sensor and the drag
force. Since RotorS does not provide ground truth of the drag force, we approximate it
offline using the linear drag model −diag([dx, dy, dz])R

w
b
T vwb [58], and the ground truth

rotation, velocity and mass normalized drag coefficients dx, dy, dz from the simulator. We
assume dz = 0 because the drag in body z axis is very small. From the plots it is evident
that the naive deterministic estimate needs additional filtering and bias removal steps,
whereas our estimator implicitly takes into account the noise characteristics of the IMU,
its bias, the noise in the state estimates, and the noise of the commanded thrust. Hence,
our estimate lies closer to the computed ground truth force. The plots also show that the
force estimates take time to converge at the beginning, as long as the IMU bias estimate
is not converged (first ∼ 8− 10s). One peculiarity visible in Fig E.4(f) are the peaks in
the estimate at t = 32 s and t = 88 s, which are not visible in the ground truth. This is
the result of a high change in commanded thrust, while the actual thrust has latency
introduced by the motors and speed controllers.

E.4.2 Blackbird Dataset

Experiment Setup

Additionally, we evaluate the performance of VIMO and VINS-Mono on the Blackbird
dataset from [8], which uses a motion capture system for closed-loop control of a UAV along
fast trajectories, while rendering photorealistic images of synthetic scenes synchronized
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Table E.2: Blackbird Dataset Evaluation

trans. RMSE (m) rot. RMSE (deg)
VINS VIMO %decrease VINS VIMO %decrease

star 1m/s 0.102 0.088 13.7 0.46 0.48 -4.3
star 2m/s 0.133 0.082 38.2 0.67 0.60 10.5
star 3m/s 0.235 0.183 22.1 0.96 0.88 8.7

picasso 1m/s 0.097 0.055 43.5 0.67 0.77 -14.9
picasso 2m/s 0.043 0.040 7.8 0.46 0.43 9.1
picasso 3m/s 0.045 0.043 2.9 0.34 0.30 14.6
picasso 4m/s 0.056 0.049 11.9 0.67 0.53 21.7

with onboard IMU and rotor thrust measurements. We use the two sequences star and
picasso at speeds from 1 to 4 m s−1 with the camera forward-facing for the star sequence
and at a fixed yaw for the picasso sequence. Since this dataset does not include any
applied external forces, we only evaluate pose estimation as direct comparison on the
public available dataset for reproducibility. Since the dataset contains IMU measurements
at 100 Hz, we downsample the images, which are available at a faster rate of 120 Hz, to
30 Hz to allow proper IMU preintegration. We use the rotor thrust measurements at the
provided ∼ 190 Hz.

Evaluation

Also for the Blackbird dataset [8], we use the trajectory alignment toolbox from [256]
with the posyaw alignment. Even though this dataset does not include sequences with
applied (and measured) external forces, we could measure a slight performance increase
as shown in Table E.2. Different from most available datasets (Sec. E.5.2), the Blackbird
dataset includes the rotor speed measurements which we exploit through the known
system dynamics and achieve superior accuracy in nearly all test sequences. One can
observe that in the star trajectory the translational errors are generally higher and the
highest tested speed is 3 m s−1. This is because of the high yaw rate and the resulting
high optical flow, rendering the estimation problem more difficult, and causing the system
to fail at 4 m s−1 without significant retuning.

E.4.3 Real-World Validation

Experiment Setup

To fully validate our approach, we provide a real-world experiment where we record data
consisting of camera frames, IMU data, commanded collective thrust, force measurements
and quadrotor state ground truth. For the quadrotor, we used an ARM-based platform
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with a monochrome global-shutter VGA resolution camera at 30 Hz synchronized with an
IMU providing inertial data at 400 Hz, based on the Qualcomm Snapdragon Flight as
depicted in Fig. E.5a. For the experiment we used our inhouse-developed flight stack. To
provide ground truth data, we employed an OptiTrack motion capture system. As a force
ground truth, we used an ATI Mini40-SI-20-1 force and torque sensor (Fig, E.5b) also
tracked in our motion capture system to recover the direction of the force. We evaluate
disturbance-free figure-eight trajectory flight with lx = 2.25 m, ly = 1.5 m, h = 0 m, and
disturbing the vehicle in hover with ∼ 3 N by pushing it with the force-measurement pole.

Evaluation

As a simple validation of our approach, we depict the top view on the position estimate of
VINS-Mono, VIMO and ground truth in Fig. E.6a, indicating a very similar performance
of both approaches. We evaluate a translational RMSE of 0.106,9 m for VIMO and
0.149,7 m for VINS-Mono, corresponding to 29% error reduction, while the rotational
RMSE is at 4.95° for VIMO and 5.15° for VINS-Mono, corresponding to 4% error reduction.
Fig. E.6b reports the error statistics on the real-world data computed with the trajectory
evaluation toolbox [256]. Additionally, we disturbed the vehicle with ∼ 3 N while in hover,
as shown in Fig. E.6c. The estimate is accurate, while noisy due to high vibrations on
the used vehicle.

E.5 Discussion

E.5.1 Limitations due to Measurement Modality

While our approach offers the benefits of improving state estimates and estimating external
force, it also comes with two limitations due to its measurement modality.

First, we consider the acceleration measurement abk in body frame abk−bbak = T bk +f bek =

T bk + f̄
b
ek

+ f bdk where we have separated f bek from (E.5) into the true external force f̄ bek
and the aerodynamic drag f bdk force. While abk and T bk are measured quantities, all other

(a) Snapdragon Flight Quadrotor (b) Force sensor ATI Mini40

Figure E.5: Experimental quadrotor platform a and an force/torque sensor b.
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(b) Translational errors over
trajectory segments of VINS —
(green), VIMO — (ours, blue)
on real-world data as statistical
box plot.

(c) External force estimate fey (top)
and ‖fe‖ (bottom) on real-world data
compared between VIMO — and a
force sensor — with a disturbance of
∼ 3N magnitude.

Figure E.6: Real-world experiments flying a figure 8 trajectory at 1.5 m s−1 depicted in top
view x,y-plot (Fig. a) and statistical box plots (Fig. b). Fig. c shows the force estimate and
ground-truth (obtained with a force sensor) of a disturbance of ∼ 2 N.

quantities have to be estimated. Due to the additive nature of external (f̄ bek) and drag
(f bdk) force, one can only estimate the sum of both (f ek , as done in this paper) if one does
not add any additional assumption or model the aerodynamic drag. Furthermore, the
same additive nature introduces an ambiguity between external force (i.e. summed f bek)
and the bias bbak . But contrary to force and drag, summed external force and bias can
be discriminated by their different dynamics, implemented as an additional prior. Due
to the nature of IMU bias, we have to assume a random walk prior by ḃak = N (0,σ2

ba
)

with N as the Gaussian distribution. In contrast, we assume the external forces to
be zero-mean Gaussian (E.10), since we are mainly interested in detecting incidental
changes in the force. Any constant component in the external force will be estimated
as accelerometer bias, since the bias is the only estimated variable without cost on its
magnitude, effectively forming a low-pass filter. Further evaluations of the observability
of visual-inertial localization can be found in [96]. Finally, we use commanded thrust in
the dynamic model whereas the accelerometer detects acceleration due to the actual rotor
thrust. Therefore, our estimator comprehends the difference between commanded and
actual thrust, if large enough, as external force. This is observed as mentioned before in
Sec. E.4.1 as peaks in Fig E.4(f), indicating that VIMO also has the capability to detect
model inaccuracy as external force. This difference between commanded and actual rotor
thrust could be mitigated by using advanced motor speed controllers with feedback on
the actual rotor speed or by modelling the motor dynamics.

E.5.2 Other Datasets

Several existing UAV visual-inertial datasets, such as EuRoC MAV [33], UPenn fast
flight [261], Zurich Urban MAV [142], have been used extensively for evaluating the
performance of VIO. Although these datasets include synchronized camera and IMU data
with accurate ground truth, we could not use them to evaluate our approach since they
do not provide rotor speed measurements or commanded thrust.
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E.6 Conclusion

This paper extends a visual inertial estimator by adding a motion constraint derived from
the dynamic model including external forces. The resulting tightly-coupled system is
shown to accurately estimate vehicle’s motion, IMU biases, and external forces, from visual
and inertial measurements and commanded thrust inputs. Thereby, our approach enables
differentiation between actuation and disturbance by the detected external forces. Inspired
from IMU preintegration, the high-rate collective rotor thrust is preintegrated into relative
motion constraints, implemented as residuals into an existing VIO pipeline (VINS-Mono).
Synthetic and real-world experiments, conducted in the presence of external disturbances,
illustrate that, compared to VINS-Mono, our estimator not only improves odometry
accuracy up to 29% on real-world data, but also estimates time-varying external forces
without increasing the computation time. Our unified state and force estimator enables
a robot to sense motion and external forces, opening the door to a number of possible
future research works and applications. As a call to the community, we want to raise
awareness for the importance of contact-enabled robotics and the need for estimators to
provide not only odometry information, but also leverage the robot dynamics to increase
accuracy and sense external forces from contacts and interaction.
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Beauty and the Beast: Optimal Methods
Meet Learning for Drone Racing

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy,

Vladlen Koltun, Davide Scaramuzza

Abstract — Autonomous micro aerial vehicles still struggle with
fast and agile maneuvers, dynamic environments, imperfect sensing,
and state estimation drift. Autonomous drone racing brings these chal-
lenges to the fore. Human pilots can fly a previously unseen track after
a handful of practice runs. In contrast, state-of-the-art autonomous
navigation algorithms require either a precise metric map of the envi-
ronment or a large amount of training data collected in the track of
interest. To bridge this gap, we propose an approach that can fly a
new track in a previously unseen environment without a precise map
or expensive data collection. Our approach represents the global track
layout with coarse gate locations, which can be easily estimated from
a single demonstration flight. At test time, a convolutional network
predicts the poses of the closest gates along with their uncertainty.
These predictions are incorporated by an extended Kalman filter to
maintain optimal maximum-a-posteriori estimates of gate locations.
This allows the framework to cope with misleading high-variance esti-
mates that could stem from poor observability or lack of visible gates.
Given the estimated gate poses, we use model predictive control to
quickly and accurately navigate through the track. We conduct exten-
sive experiments in the physical world, demonstrating agile and robust
flight through complex and diverse previously-unseen race tracks. The
presented approach was used to win the IROS 2018 Autonomous Drone
Race Competition, outracing the second-placing team by a factor of
two.
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Figure F.1: A quadrotor flies through an indoor track. Our approach uses optimal filtering
to incorporate estimates from a deep perception system. It can race a new track after a single
demonstration.

F.1 Introduction

First-person view (FPV) drone racing is a fast-growing sport, in which human pilots race
micro aerial vehicles (MAVs) through tracks via remote control. Drone racing provides a
natural proving ground for vision-based autonomous drone navigation. This has motivated
competitions such as the annual IROS Autonomous Drone Race [154] and the recently
announced AlphaPilot Innovation Challenge, an autonomous drone racing competition
with more than 2 million US dollars in cash prizes.

To successfully navigate a race track, a drone has to continually sense and interpret its
environment. It has to be robust to cluttered and possibly dynamic track layouts. It needs
precise planning and control to support the aggressive maneuvers required to traverse a
track at high speed. Drone racing thus crystallizes some of the central outstanding issues
in robotics. Algorithms developed for drone racing can benefit robotics in general and
can contribute to areas such as autonomous transportation, delivery, and disaster relief.

Traditional localization-based approaches for drone navigation require precomputing a
precise 3D map of the environment against which the MAV is localized. Thus, while
previous works demonstrated impressive results in controlled settings [156], these meth-
ods are difficult to deploy in new environments where a precise map is not available.
Additionally, they fail in the presence of dynamic objects such as moving gates, have
inconsistent computational overhead, and are prone to failure under appearance changes

167



Appendix F. Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing

such as varying lighting.

Recent work has shown that deep networks can provide drones with robust perception
capabilities and facilitate safe navigation even in dynamic environments [111, 103].
However, current deep learning approaches to autonomous drone racing require a large
amount of training data collected in the same track. This stands in contrast to human
pilots, who can quickly adapt to new tracks by leveraging skills acquired in the past.

In this paper, we develop a deep-learning-aided approach to autonomous drone racing
capable of fast adaptation to new tracks, without the need for building precise maps or
collecting large amounts of data from the track. We represent a track by coarse locations
of a set of gate, which can be easily acquired in a single demonstration flight through the
track. These recorded gate represent the rough global layout of the track. At test time,
the local track configuration is estimated by a convolutional network that predicts the
location of the closest gate together with its uncertainty, given the currently observed
image. The network predictions and uncertainties are continuously incorporated using
an extended Kalman filter (EKF) to derive optimal maximum-a-posteriori estimates
of gate locations. This allows the framework to cope with misleading high-variance
estimates that could stem from bad observability or complete absence of visible gate.
Given these estimated gate locations, we use model predictive control to quickly and
accurately navigate through them.

We evaluate the proposed method in simulation and on a real quadrotor flying fully au-
tonomously. Our algorithm runs onboard on a computationally constrained platform. We
show that the presented approach can race a new track after only a single demonstration,
without any additional training or adaptation. Integration of the estimated gate positions
is crucial to the success of the method: a purely image-based reactive approach only
shows non-trivial performance in the simplest tracks. We further demonstrate that the
proposed method is robust to dynamic changes in the track layout induced by moving
gates.

The presented approach was used to win the IROS Autonomous Drone Race Competition,
held in October 2018. An MAV controlled by the presented approach placed first in the
competition, traversing the eight gates of the race track in 31.8 seconds. In comparison,
the second-place entry completed the track in 61 seconds, and the third in 90.1 seconds.

F.2 Related Work

Traditional approaches to autonomous MAV navigation build on visual inertial odometry
(VIO) [76, 25, 123, 241] or simultaneous localization and mapping (SLAM) [163, 211],
which are used to provide a pose estimate of the drone relative to an internal metric map
[128, 64]. While these methods can be used to perform visual teach and repeat [64], they
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are not concerned with trajectory generation [148, 160]. Furthermore, teach and repeat
assumes a static world and accurate pose estimation: assumptions that are commonly
violated in the real world.

The advent of deep learning has inspired alternative solutions to autonomous navigation
that aim to overcome these limitations. These approaches typically predict actions directly
from images. Output representations range from predicting discrete navigation commands
(classification in action space) [114, 87, 134] to direct regression of control signals [161].
A different line of work combines network predictions with model predictive control by
regressing the cost function from a single image [54].

In the context of drone racing, Kaufmann et al. [111] proposed an intermediate repre-
sentation in the form of a goal direction and desired speed. The learned policy imitates
an optimal trajectory [148] through the track. An advantage of this approach is that
it can navigate even when no gate is in view, by exploiting track-specific context and
background information. A downside, however, is the need for a large amount of labeled
data collected directly in the track of interest in order to learn this contextual information.
As a result, the approach is difficult to deploy in new environments.

Jung et al. [103] consider the problem of autonomous drone navigation in a previously
unseen track. They use line-of-sight guidance combined with a deep-learning-based gate
detector. As a consequence, the next gate to be traversed has to be in view at all times.
Additionally, gates cannot be approached from an acute angle since the algorithm does
not account for gate rotation. The method is thus applicable only to relatively simple
environments, where the next gate is always visible.

Our approach addresses the limitations of both works [111, 103]. It operates reliably even
when no gate is in sight, while eliminating the need to retrain the perception system for
every new track. This enables rapid deployment in complex novel tracks.

F.3 Methodology

We address the problem of robust autonomous flight through a predefined, ordered set of
possibly spatially perturbed gate. Our approach comprises three subsystems: perception,
mapping, and combined planning and control. The perception system takes as input a
single image from a forward-facing camera and estimates both the relative pose of the
next gate and a corresponding uncertainty measure. The mapping system receives the
output of the perception system together with the current state estimate of the quadrotor
and produces filtered estimates of gate poses. The gate poses are used by the planning
system to maintain a set of waypoints through the track. These waypoints are followed by
a control pipeline that generates feasible receding-horizon trajectories and tracks them.
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Figure F.2: Relation of odometry O, body B, and gate frame Gl.

F.3.1 Notation and Frame Convention

We denote all scalars by lowercase letters x, vectors by lowercase bold letters x, and
matrices by bold uppercase letters X. Estimated values are written as x̂, measured values
as x̃.

The relevant coordinate frames are the odometry frame O, the body frame B, and the
gate frames Gl, where l ∈ {1, . . . , Nl} and Nl is the number of gate. A schematic overview
of the relation between coordinate frames is shown in Figure F.2. The odometry frame
O is the global VIO reference frame. The relation between the body frame B and the
odometry frame O is given by the rotation ROB and translation tOB. This transform is
acquired through a visual inertial pose estimator. The prediction (t̃BGl , R̃BGl) is provided
together with a corresponding uncorrelated covariance in polar coordinates Σ̃BGl,pol =

diag(σ̃2
BGl,pol

) of the gate’s pose in the body frame. In parallel, we maintain an estimate

of each gate pose (t̂OGl , R̂OGl) along with its covariance Σ̂OGl = cov
(
t̂OGl , R̂OGl

)
in the

odometry frame. This has the advantage that gate poses can be updated independently
of each other.

F.3.2 Perception System

Architecture

The deep network takes as input a 320× 240 RGB image and regresses both the mean
z̃BGl,pol = [r̃, θ̃, ψ̃, φ̃]> ∈ R4 and the variance σ̃2

BGl,pol
∈ R4 of a multivariate normal dis-

tribution that describes the current estimate of the next gate’s pose. Our choice of output
distribution is motivated by the fact that we use an EKF to estimate the joint probability
distribution of a gate’s pose, which is known to be optimal for identical and independently
distributed white noise with known covariance. The mean represents the prediction of
the relative position and orientation of the gate with respect to the quadrotor in spherical
coordinates. We found this to be advantageous compared to a Cartesian representation
since it decouples distance estimation from the position of the gate in image coordinates.
We use a single angle φ̃ to describe the relative horizontal orientation of the gate, since
the gravity direction is known from the IMU. Furthermore, we assume that gate are
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always upright and can be traversed horizontally along the normal direction. Specifically,
φ̃ is measured between the quadrotor’s current heading and the gate’s heading.

CNN

MLP

MLP

z̃BGl,pol

σ̃2
BGl,pol

Figure F.3: Schematic illustration of the network architecture. Image features are extracted by
a CNN [134] and passed to two separate MLPs to regress z̃BGl,pol and σ̃

2
BGl,pol

, respectively.

The overall structure of the deep network is shown in Figure F.3. First, the input
image is processed by a Convolutional Neural Network (CNN), based on the shallow
DroNet architecture [134]. The extracted features are then processed by two separate
multilayer perceptrons (MLPs) that estimate the mean z̃BGl,pol and the variance σ̃2

BGl,pol

of a multivariate normal distribution, respectively. A similar network architecture for
mean-variance estimation was proposed in [175].

Training Procedure

We train the network in two stages.

In the first stage, the parameters of the CNN and MLPz, denoted by θCNN and θz, are
jointly learned by minimizing a loss over groundtruth poses for images with visible gate:

{θ∗CNN,θ
∗
z̃i} = arg min

θCNN,θz̃i

N∑
i=1

||yi − z̃i||22, (F.1)

where yi denotes the groundtruth pose and N denotes the dataset size.

In the second stage, the training set is extended to also include images that do not show
visible gate. In this stage only the parameters θσ2 of the subnetwork MLPσ2 are trained,
while keeping the other weights fixed. We minimize the loss function proposed by [175],
which amounts to the negative log-likelihood of a multivariate normal distribution with
uncorrelated covariance:

− log p
(
y | z̃i, σ̃2

)
∝

4∑
j=1

log σ̃2j +
(yj − z̃j)2

σ̃2j
. (F.2)

Our use of mean-variance estimation is motivated by studies that have shown that it is a
computationally efficient way to obtain uncertainty estimates [113].
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Training Data Generation

We collect a set of images from the forward-facing camera on the drone and associate each
image with the relative pose of the gate with respect to the body frame of the quadrotor.
In real-world experiments, we use the quadrotor and leverage the onboard state estimation
pipeline to generate training data. The platform is initialized at a known position relative
to a gate and subsequently carried through the environment while collecting images and
corresponding relative gate poses. To collect training data, it is not necessary to have
complete tracks available. A single gate placed in different environments suffices, as the
perception system only needs to estimate the relative pose with respect to the next gate
at test time. Moreover, in contrast to Kaufmann et al. [111], the perception system is
never trained on data from tracks and environments it is later deployed in.

F.3.3 Mapping System

The mapping system takes as input a measurement from the perception system and
outputs a filtered estimate of the current track layout. By correcting the gates with
the measurements from the CNN, gate displacement and accumulated VIO drift can
be compensated for. The mapping part of our pipeline can be divided into two stages:
measurement assignment stage and filter stage.

Measurement Assignment

We maintain a map of all gate l = 1...Nl with states x̂OGl = [t̂OGl , φ̂OGl ]
> corresponding

to gate translation t̂OGl and yaw φ̂OGl with respect to the odometry frame O. The output
of the perception system is used to update the pose x̂OGl of the next gate to be passed.
To assign a measurement to a gate, the measurement is transformed into the odometry
frame and assigned to the closest gate. If a measurement is assigned to a gate that is
not the next gate to be passed, it is discarded as an outlier. We keep track of the next
gate by detecting gate traversals. The detection of a gate traversal is done by expressing
the quadrotor’s current position in a gate-based coordinate frame. In this frame, the
condition for traversal can be expressed as

Gl t̂GlB,x ≥ 0. (F.3)

Extended Kalman Filter

The prediction of the network in body frame B is given by z̃BG,pol = [r̃, θ̃, ψ̃, φ̃]> containing
the spherical coordinates [r̃, θ̃, ψ̃]> and yaw φ̃ of the gate, and the corresponding variance
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σ̃2
BG,pol. The transformation into the Cartesian representation z̃BG leads to

z̃BG = f(z̃BG,pol) =


r̃ sin θ̃ cos ψ̃

r̃ sin θ̃ sin ψ̃

r̃ cos θ̃

φ̃

 (F.4)

Σ̃BG = Jf |z̃polΣ̃BG,polJ
>
f |z̃pol , (F.5)

where Jf ,i,j = ∂fi
∂xpol,j

is the Jacobian of the conversion function f and Jf |zpol is its
evaluation at zpol. To integrate neural network predictions reliably into a map with prior
knowledge of the gate, we represent each gate with its own EKF. We treat the prediction
z̃BG and Σ̃BG at each time step as a measurement and associated variance, respectively.
Similar to the state, z̃BG = [t̃>BG, φ̃BG]> consists of a translation t̃BG and rotation φ̃BG
around the world z-axis. Since our measurement and states have different origin frames,
we can formulate the EKF measurement as follows:

z̃k = Hkx̂k + w, w ∼ N (µk,σk) (F.6)

E[z̃k] =

[
R−1OB,k OtOG,k −R−1OB,k OtOB,k

φOG,k − φOB,k

]
.

Now with x̂k = [OtOG,k, φOG,k]
> we can write

Hk =

[
R−1OB,k 0

0 1

]
(F.7)

µk =

[
−R−1OB,k OtOB,k

−φOB,k

]
Σk = Σ̃BG,k (F.8)

and, due to identity process dynamics and process covariance ΣQ, our prediction step
becomes

x̂∗k+1 = x̂k P̂∗k+1 = P̂k + ΣQ. (F.9)

The a-posteriori filter update can be summarized as follows:

Kk = P̂∗kHk

(
Σ̃BG,k + HkP̂

∗
kH
>
k

)−1
x̂k+1 = x̂∗k + Kk(z̃k − µk −Hkx̂

∗
k)

P̂k+1 = (I−KkHk) P̂∗k (I−KkHk)
> + KkΣ̃BG,kK

>
k

(F.10)

with P̂k as the estimated covariance and the superscript ∗ indicating the a-priori predic-
tions.
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F.3.4 Planning and Control System

The planning and control stage is split into two asynchronous modules. First, low-level
waypoints are generated from the estimated gate position and a desired path is generated
by linearly interpolating between the low-level waypoints. Second, locally feasible control
trajectories are planned and tracked using a model predictive control scheme.

Waypoint Generation

For each gate in our map we generate two waypoints: one lying in front of the gate
relative to the current quadrotor position and one lying after the gate. Both waypoints
are set with a positive and negative offset pwp,l± in the x direction with respect to the
gate l:

pwp,l± =O tOGl + ROGl [±xG, 0, 0]>, (F.11)

where xG is a user-defined constant accounting for the spatial dimension of gate l. We
then linearly interpolate a path from waypoint to waypoint and use it as a reference for
our controller.

Model Predictive Control

We formulate the control problem as a quadratic optimization problem which we solve
using sequential quadratic programming as described in [59]:

min
u

∫ tf

t0

(
x̄>t (t)Qx̄t(t) + ū>t (t)Rūt(t)

)
dt

x̄(t) = x(t)− xr(t) ū(t) = u(t)− ur(t)

subject to r(x,u) = 0 h(x,u) ≤ 0.

The states x and inputs u are weighted with positive diagonal matrices Q and R with
respect to a reference xr and ur. The equality and inequality constraints, r and h

respectively, are used to incorporate the vehicle dynamics and input saturations. The
reference is our linearly sampled path along which the MPC finds a feasible trajectory.
Note that we can run the control loop independent of the detection and mapping pipeline
and reactively stabilize the vehicle along the changing waypoints.
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F.4 Experimental Setup

We evaluate the presented approach in simulation and on a physical system.

F.4.1 Simulation

We use RotorS [80] and Gazebo [116] for all simulation experiments. To train the
perception system, we generated 45,000 training images by randomly sampling camera
and gate positions and computing their relative poses. For quantitative evaluation, a
100% successful trial is defined as completing 3 consecutive laps without crashing or
missing a gate. If the MAV crashes or misses a gate before completing 3 laps, the success
rate is measured as a fraction of completed gate out of 3 laps: for instance, completing 1

lap counts as 33.3% success.

F.4.2 Physical System

In all real-world experiments and data collection we use an in-house MAV platform with
an Intel UpBoard 1 as the main computer running the CNN, EKF, and MPC. Additionally
we use a Qualcomm Snapdragon Flight 2 as a visual-inertial odometry unit. The platform
is shown in Fig. F.4. The CNN reaches an inference rate of ∼ 10 Hz while the MPC runs
at 100 Hz. With a take-off weight of 950 g the platform reaches thrust-to-weight ratio of
∼ 3.

We collect training data for the perception system in five different environments, both
indoors and outdoors. Example images from the environments are shown in Fig. F.5. In
total, we collected 32,000 images.

1https://www.up-board.org/up/
2https://developer.qualcomm.com/hardware/qualcomm-flight

Figure F.4: Our platform, equipped with an Intel UpBoard and a Qualcomm Snapdragon
Flight.
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Figure F.5: We collected training data for the perception system in 5 different environments.
From left to right: flying room, outdoor urban environment, atrium, outdoor countryside, garage.

F.5 Results

Results are shown in the supplementary video at
https://youtu.be/UuQvijZcUSc.

F.5.1 Simulation

We first present experiments in a controlled, simulated environment. The aim of these
experiments is to thoroughly evaluate the presented approach both quantitatively and
qualitatively and compare it to a baseline – the method of Jung et al. [103]. The baseline
was trained on the same data as our approach.

We evaluate the two methods on three tracks of increasing difficulty. Figs. F.6a-c show an
illustration of the three race tracks and plot the executed trajectories together with the
nominal gate positions in red and the actual displaced gate positions in the corresponding
track color. Our approach achieved successful runs in all environments, with speeds up
to 4 m s−1 in the first two tracks. Additionally, gate displacement was handled robustly
up to a magnitude of 2 m before a significant drop in performance occurred. Figs. F.6d-i
show the success rate of our method and the baseline on the three tracks, under varying
speed and track perturbations. Our approach outperforms the baseline by a large margin
in all scenarios. This is mainly because the baseline relies on the permanent visibility of
the next gate. Therefore, it only manages to complete a lap in the simplest first track
where the next gate can always be seen. In the more complex second and third tracks,
the baseline passes at most one or two gates. In contrast, due to the integration of prior
information from demonstration and approximate mapping, our approach is successful on
all tracks, including the very challenging third one.

F.5.2 Physical System

To show the capabilities of our approach on a physical platform, we evaluated it on a
real-world track with 8 gates and a total length of 80 meters, shown in Fig. F.7. No
training data for the perception system was collected in this environment. Fig. F.8
summarizes the results. As in the simulation experiments, we measure the performance
with respect to the average MAV speed. As before, a success rate of 100% requires 3
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1m

Success of ours on Track 2

0 1 2 3

2

3

4

5

(d) Ours on track 1

Success of ours on Track 1

0 1 2 3

2

3

4

5

(e) Ours on track 2

Success of ours on Track 3

0 1 2 3

2

3

4

5

(f) Ours on track 3
Success of baseline on Track 2

0 1 2 3

2

3

4

5

(g) Baseline on track 1

Success of baseline on Track 1

0 1 2 3

2

3

4

5

(h) Baseline on track 2

Success of baseline on Track 3

0 1 2 3

2

3

4

5
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Figure F.6: Results of the simulation experiments. We compare the presented approach to the
baseline [103] on three tracks, at different speeds and track perturbations. (a)-(c): Perturbed
tracks and example trajectories flown by our approach. (d)-(f): Success rate of our method.
For each data point, 5 experiments were performed with random initial gate perturbation. (g)-
(i): Success rate of the baseline method.

completed laps without crashing or missing a gate. Our approach confidently completed
3 laps with speeds up to 2 m s−1 and managed to complete the track with speeds up to
3.5 m s−1. In contrast, the reactive baseline was not able to complete the full track even
at 1.0 m s−1 (not shown in the figure).

An example recorded trajectory of our approach is shown in Fig. F.7. Note that one
of the gates was moved during the experiment, but our approach was robust to this
change in the environment. Our approach could handle gate displacements of up to 3.0 m

and complete the full track without crashing. The reader is encouraged to watch the
supplementary video for more qualitative results on real tracks.
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Figure F.7: Trajectory flown through multiple gate, one of which was moved as indicated by
the red arrow. For visualization, only a single lap is illustrated.

F.6 Conclusion

We presented an approach to autonomous vision-based drone navigation. The approach
combines learning methods and optimal filtering. In addition to predicting relative gate
poses, our network also estimates the uncertainty of its predictions. This allows us to
integrate the network outputs with prior information via an extended Kalman filter.

We showed successful navigation through both simulated and real-world race tracks with
increased robustness and speed compared to a state-of-the-art baseline. The presented
approach reliably handles gate displacements of up to 2 m. In the physical track, we
reached speeds of up to 3.5 m s−1, outpacing the baseline by a large margin.

Our approach is capable of flying a new track with an approximate map obtained from a
single demonstration flight. This approach was used to win the IROS 2018 Autonomous
Drone Race Competition, where it outraced the second-placing entry by a factor of two.

1.0 1.5 2.0 2.5 3.0 3.5

Figure F.8: Success rates of our approach in the real-world experiment. The reader is encouraged
to watch the supplementary video to see the presented approach in action.
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G PAMPC: Perception-Aware Model
Predictive Control for Quadrotors

The version presented here is reprinted, with permission, from:

Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. “PAMPC: Perception-
aware model predictive control for quadrotors”. In: IEEE/RSJ Int. Conf. Intell. Robot.
Syst. (IROS). 2018
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PAMPC: Perception-Aware Model
Predictive Control for Quadrotors

Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza

Abstract — We present the first perception-aware model predictive
control framework for quadrotors that unifies control and planning with
respect to action and perception objectives. Our framework leverages
numerical optimization to compute trajectories that satisfy the system
dynamics and require control inputs within the limits of the platform.
Simultaneously, it optimizes perception objectives for robust and re-
liable sensing by maximizing the visibility of a point of interest and
minimizing its velocity in the image plane. Considering both perception
and action objectives for motion planning and control is challenging
due to the possible conflicts arising from their respective requirements.
For example, for a quadrotor to track a reference trajectory, it needs to
rotate to align its thrust with the direction of the desired acceleration.
However, the perception objective might require to minimize such
rotation to maximize the visibility of a point of interest. A model-
based optimization framework, able to consider both perception and
action objectives and couple them through the system dynamics, is
therefore necessary. Our perception-aware model predictive control
framework works in a receding-horizon fashion by iteratively solving a
non-linear optimization problem. It is capable of running in real-time,
fully onboard our lightweight, small-scale quadrotor using a low-power
ARM computer, together with a visual-inertial odometry pipeline. We
validate our approach in experiments demonstrating (i)) the conflict
between perception and action objectives, and (ii)) improved behavior
in extremely challenging lighting conditions.
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Supplementary material

Video: https://youtu.be/9vaj829vE18

Code: https://github.com/uzh-rpg/rpg_mpc

G.1 Introduction

Thanks to the progresses in perception algorithms, the availability of low-cost cameras,
and the increased computational power of small-scale computers, vision-based perception
has recently emerged as the de facto standard in onboard sensing for micro aerial vehicles.
This made it possible to replicate some of the impressive quadrotor maneuvers seen in
the last decade [150, 148, 160, 32], which relied on motion-capture systems, using only
onboard sensing, such as cameras and IMUs [63, 128, 224].

Cameras have a number of advantages over other sensors in terms of weight, cost, size,
power consumption and field of view. However, vision-based perception has severe
limitations: it can be intermittent and its accuracy is strongly affected by both the
environment (e.g., texture distribution, light conditions) and motion of the robot (e.g.,
motion blur, camera pointing direction, distance from the scene). This means that one
cannot always replace motion-capture systems with onboard vision, since the motion of a
camera can negatively affect the quality of the estimation, posing hard bounds on the
agility of the robot. On the other hand, perception can benefit from the robot motion if it
is planned considering the necessities and the limitations of onboard vision. For example,
to pass through a narrow gap while localizing with respect to it using an onboard camera,
it is necessary to guarantee that the gap is visible at all times. Similarly, to navigate
through an unknown environment, it is necessary to guarantee that the camera always
points towards texture-rich regions.

To fully leverage the agility of autonomous quadrotors, it is necessary to create synergy
between perception and action by considering them jointly as a single problem.

G.1.1 Contributions

Model Predictive Control (MPC) has become increasingly popular for quadrotor con-
trol [108, 169, 16] thanks to its capability of simultaneously dealing with different
constraints and objectives through optimization. In this work, we present an MPC
algorithm for quadrotors able to optimize both action and perception objectives.

Our framework satisfies the robot dynamics and computes feasible trajectories with
respect to the input saturations. Such trajectories are not constrained to specific time or
space parametrization (e.g., polynomials in time or splines), and tightly couple perception
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Figure G.1: An example application of our PAMPC, where a quadrotor is asked to fly at 3 m s−1

around a region of interest while keeping it visible in the field of view of its camera.

and action. To do so, perception objectives aimed at rendering vision-based estimation
more robust are taken into account in the optimization problem. Such objectives are
the visibility of a point of interest the robot needs to maintain in the image, and the
minimization of the velocity of its projection onto the image plane. The main challenge
in this is to simultaneously cope with action (e.g., dynamics, underactuation, saturations)
and perception objectives, due to the potential conflicts between them.

To solve this problem, we leverage numerical optimization to compute trajectories that are
optimal with respect to a cost function considering both the dynamics of the robot and the
quality of perception. To fully exploit the agility of a quadrotor, we incorporate perception
objectives into the optimization problem not as constraints, but rather as components
to be optimized. This results in a perception-aware framework which is intrinsically
tailored to agile navigation, since the optimizer can trade off between perception and
action objectives (cf. Fig. G.1, depicting fast circle flight while adjusting the heading
to look at a point of interest). Furthermore, considering perception in the cost function
reduces the computation load of the model predictive control pipeline, allowing it to run
in real-time on a low-power onboard computer. Our approach does not depend on the task
and can potentially provide benefits to a large variety of applications, such as vision-based
localization, target tracking, visual servoing, and obstacle detection. We validate our
perception-aware model predictive control framework in real-world experiments using a
small-scale, lightweight quadrotor platform.
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G.1.2 Related Work

The aforementioned shift from offboard to onboard sensing based on cameras resulted in
an increased number of works trying to connect perception and action.

In [183], the authors proposed a method to compute minimum-time trajectories that
take into account the limited field of view of a camera to guarantee visibility of points
of interests. Such a method requires the trajectory to be parametrized as a B-spline
polynomial, constraining the kind of motion the robot can perform. Also, perception
is included in the planning problem as hard constraint, posing an upper-bound to the
agility of the robot since such constraints must be satisfied at all times. Furthermore, the
velocity of the projection of the points of interest in the image is not taken into account.
Finally, the algorithm was not suited for real-time control of a quadrotor, and was only
tested in simulations..

In [223], the authors focused on combining visual servoing with active Structure from
Motion and proposed a solution to modify the trajectory of a camera in order to increase
the quality of the reconstruction. In such a work, a trajectory for the tracked features in
the image plane was required, and the null space of the visual servoing task was exploited
in order to render it possible for such feature to track the desired trajectory. Furthermore,
the authors did not consider the underactuation of the robot, which can significantly
lower the performance of the overall task due to potentially conflicting dynamics and
perception objectives.

In [41] and [77], information gain was used to bridge the gap between perception and
action. In the first work, the authors tackled the problem of selecting trajectories that
minimize the pose uncertainty by driving the robot toward regions rich of texture. In the
second work, a technique to minimize the uncertainty of a dense 3D reconstruction based
on the scene appearance was proposed. In both works, however, near-hover quadrotor
flight was considered, and the underactation of the platform was not taken into account.

In [215], a hybrid visual servoing technique for differentially flat systems was presented.
A polynomial parameterization of the flat outputs of the system was required, and due
to the computational load required by the designed optimization framework, an optimal
trajectory was computed in advance and never replanned. This did not allow coping
with external disturbances and unmodelled dynamics, which during the execution of the
trajectory can lead to behaviours different from the expected one.

In [164] and [165], a real-time motion planning method for aerial videography was
presented. In these works, the main goal was to optimize the viewpoint of a pan-tilt
camera carried by an aerial robot in order to improve the quality of the video recordings.
Both works were mainly targeted to cinematography, therefore they considered objectives
such as the size of a target of interest and its visibility. Conversely, we target robotic
sensing and consider objectives aimed at facilitating vision-based perception.
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In [188], the authors proposed a two-step approach for target-aware visual navigation.
First, position-based visual servoing was exploited to find a trajectory minimizing the
reprojection error of a landmark of interest. Then, a model predictive control pipeline
was used to track such a trajectory. Conversely, we solve the trajectory optimization and
tracking within a single framework. Additionally, that work only aimed at rendering the
target visible, but did not take into account that, due to the motion of the camera, it
might not be detectable because of motion blur. We cope with this problem by considering
in the optimization problem the velocity of the projection of the point of interest in the
image plane.

G.1.3 Structure of the Paper

The remainder of this paper is organized as follows. In Sec. G.2 we provide the general
formulation of the problem. In Sec. G.3 we derive the model for the dynamics of the
projection of a 3D point into the image plane for the case of a quadrotor equipped with a
camera. In Sec. G.4 we present our perception-aware optimization framework, describing
the objectives and the constraints it takes into account. In Sec. G.5 we validate our
approach in different real-world experiments showcasing the capability of our framework.
In Sec. G.6 we discuss our approach and provide additional insights and in Sec. G.7 we
draw the conclusions.

G.2 Problem Formulation

For truly autonomous robot navigation, two components are essential: (i)) perception,
both of the ego-motion and of the surrounding environment; (ii)) action, meant as the
combination of motion planning and control algorithms. A very wide literature is available
for both of them. However, they are rarely considered as a joint problem.

The need for coupled perception and action can be easily explained. To guarantee
safety, accurate and robust perception is necessary. Nevertheless, the quality of vision-
based perception is strongly affected by the motion of the camera. On the one hand, it
can degrade its performance by not making it possible to extract sufficiently accurate
information from images. For example, lack of texture or blur due to camera motion
can lead to algorithm failure. On the other, the quality of vision-based perception can
improve significantly if its limitations and requirements are considered, e.g. by rendering
highly-textured areas visible in the image and by reducing motion blur. Therefore it is
necessary to create synergy between perception and action.

Let x and u be the state and input vectors of a robot, respectively. Assume its dynamics
to be described by a set of differential equations ẋ = f (x,u). Furthermore, let z be the
state vector of the perception system (e.g., 3D points’ projection onto the image plane),
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and σ a vector of parameters characterizing it (e.g., the focal length of the camera or its
field of view). The perception state and the robot state are coupled through the robot
dynamics, namely z = fp (x,u, σ). Given certain action objectives, we can define an
action cost La (x,u). Similarly, we can define a cost Lp (z) for the perception objectives.

We can then formulate the coupling of perception and action as an optimization problem:

min
u

∫ tf

t0

La (x,u) + Lp (z) dt

subject to r(x,u, z) = 0

h(x,u, z) ≤ 0,

(G.1)

where r(x,u, z) and h(x,u, z) represent equality and inequality constraints that the
solution should satisfy for perception, action, or both of them simultaneously.

G.3 Methodology

Any computer vision algorithm aimed at providing a robot with the information necessary
for navigation (e.g., pose estimation, obstacle detection, etc) has two fundamental require-
ments. First, the points of interest used by the algorithm to provide the aforementioned
information must be visible in the image. For example, such points can be the landmarks
used for pose estimation by visual odometry algorithms, or the points belonging to an
object for obstacle detection. If such points are not visible while the robot is moving,
there is no way the algorithm can cope with the absence of information. Second, such
points of interest must be clearly recognizable in the image. Depending on the motion of
the camera and the distance from the scene, the projection of a 3D point onto an image
can suffer from motion blur, making it very complicated, if not impossible, to extract
meaningful information. Therefore, the motion of the camera should be thoroughly
planned to guarantee robust visual perception.

Based on the considerations above, in this work we consider two perception objectives in
our framework: (i)) visibility of points of interest, and (ii)) minimization of the velocity
of their projection onto the image plane. In the following, we study the relation between
the motion of a quadrotor equipped with an onboard camera and the projection onto
the image plane of a point in space. Without loss of generality, we consider the case
of a single 3D point of interest. Our goal is to couple perception and action into an
optimization framework by expressing the dynamics of its projection onto the image plane
as a function of the state and input vectors of a quadrotor.
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Figure G.2: A schematics representing the world frame W , the body frame B and the camera
frame C. The position and orientation of B with respect to W is provided by TWB . The constant
rigid body transformation TBC provides the extrinsics of the camera. A feature located at Wpf

is projected into the image plane onto a point of coordinates s. s0 represents the principal point.

G.3.1 Nomenclature

In this work, we make use of a world frameW with orthonormal basis {xW ,yW , zW }. The
quadrotor frame B, also referred to as the body frame, has orthonormal basis {xB,yB, zB}.
Finally, we assume the robot to be equipped with a camera, whose reference frame C has
orthonormal basis {xC ,yC , zC}. Fig. G.2 provides a clear overview about the reference
frames.

Throughout this manuscript, we represent vectors as bold quantities having a prefix,
representing the frame in which they are expressed, and a suffix, indicating the origin
and the end of such a vector. For example, the quantity WpWB represents the position
of the body frame B with respect to the world frame W , expressed in the world frame.
To simplify the notation, if a vector has no prefix, we assume it to be expressed in the
first frame reported in the suffix (i.e., the frame where the vectors origin is).

We use quaternions to represent the orientation of a rigid body. The time derivative of
a quaternion q = (qw, qx, qy, qz)

ᵀ is given by q̇ = 1
2Λ (ω) · q, where the skew-symmetric

matrix Λ (ω) of a vector ω = (ωx, ωy, ωz)
ᵀ is defined as:

Λ (ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 . (G.2)

Finally, we use the operator � to denote the multiplication between a quaternion and a
vector. More specifically, multiplying a vector v with the quaternion q means rotating v
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by the rotation induced by q. By doing so, we obtain a vector v′ = v � q = Qv where:

Q =

 1− 2q2y − 2q2z 2(qxqy + qwqz) 2(qxqz − qwqy)
2(qxqy − qwqz) 1− 2q2x − 2q2z 2(qyqz + qwqx)

2(qxqz + qwqy) 2(qyqz − qwqx) 1− 2q2x − 2q2y

 .

G.3.2 Quadrotor Dynamics

Let pWB = (px, py, pz)
ᵀ and qWB = (qw, qx, qy, qz)

ᵀ be the position and the orientation of
the body frame with respect to the world frame W , expressed in world frame, respectively
(cf. Fig. G.2). Additionally, let vWB = (vx, vy, vz)

ᵀ be the linear velocity of the body,
expressed in world frame, and ΩB = (ωx, ωy, ωz)

ᵀ its angular velocity, expressed in the
body frame. Finally, let c = (0, 0, c)ᵀ be the mass-normalized thrust vector, where
c = (f1 + f2 + f3 + f4) /m, fi is the thrust produced by the i-th motor, and m is the
mass of the vehicle. In this work, we use the dynamical model of a quadrotor proposed
in [160]:

ṗWB = vWB

v̇WB =W g + qWB � c

q̇WB =
1

2
Λ (ΩB) · qWB

(G.3)

where Wg = (0, 0,−g)ᵀ is the gravity vector, with g = 9.81 m s−2. The state and the
input vectors of the system are x = [pWB, vWB, qWB]ᵀ and u =

[
c,Ωᵀ

B

]ᵀ, respectively.
G.3.3 Perception Objectives

Let Wpf = (W pfx,W pfy,W pfz) be the 3D position of a point of interest (landmark)
in the world frame W (cf. Fig. G.2). We assume the body to be equipped with a
camera having extrinsic parameters described by a constant rigid body transformation
TBC = [pBC , qBC ], where pBC and qBC are the position and the orientation of C with
respect to B. The coordinates Cpf = (Cpfx,C pfy,C pfz)

ᵀ of Wpf in the camera frame C
are given by:

Cpf = (qWB qBC)−1�
(Wpf − (qWB � pBC + pWB)) .

(G.4)

The point Cpf in camera frame is projected into the image plane coordinates s = (u, v)ᵀ

according to classical pinhole camera model [229]:

u = fx
Cpfx

Cpfz
, v = fy

Cpfy

Cpfz
(G.5)
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where fx, fy are the focal lengths for pixel rows and columns, respectively.

To guarantee robust vision-based perception, the projection s of a point of interest Wpf
should be as close as possible to the center of the image for two reasons. First, keeping its
projection in the center of the image results in the highest safety margins against external
disturbances. The second reason comes from the fact that the periphery of the image
is typically characterized by a non-negligible distortion, especially for large field of view
cameras. A number of models for such distortion are available in the literature, as well
as techniques to estimate their parameters to compensate the effects of the distortion.
However, such a compensation is never perfect and this can degrade the accuracy of the
estimates.

As previously mentioned, in addition to rendering the point of interest visible in the
image, we are interested in reducing the velocity of its projection onto the image plane.
We assume the point of interest to be static, but similar considerations apply to the
case where such a point of interest moves with respect to the world frame. To express
the projection velocity as a function of the quadrotor state and input vectors, we can
differentiate (G.5) with respect to time:

u̇ = fx
C ṗfx Cpfz − Cpfx C ṗfz

Cp2fz
,

v̇ = fy
C ṗfy Cpfz − Cpfy C ṗfz

Cp2fz
.

(G.6)

Eq. (G.6) can be written in a compact form as:

ṡ =

u̇v̇
0

 =


0 − fx

Cp
2
fz

0

fy

Cp
2
fz

0 0

0 0 0

 (Cpf ×C ṗf ) . (G.7)

To compute the term C ṗf , we can differentiate (G.4) with respect to time:

C ṗf = −1

2
Λ (ΩC) Cpf −C vWC , (G.8)

where:

CvWC = (qWB qBC)−1�(
1

2
Λ (ΩB) qWB � pBC + vWB

)
,

ΩC = q−1BC � ΩB.

(G.9)
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G.3.4 Action Objectives

For a quadrotor to execute a desired task (e.g., reach a target position in space), a suitable
trajectory has to be planned. In this regard, for a quadrotor two objectives should be
considered.

The first comes from the bounded inputs available to the system. The thrust each motor
can produce has both an upper and a lower bound, leading to a limited input vector u.
Therefore, denoting the subset of the allowed inputs as U , the planned trajectory should
be such that the condition u(t) ∈ U ∀t can be satisfied.

The second objective to be considered comes from the underactuated nature of a quadrotor.
In the most common configuration, all the rotors point in the same direction, typically
along the axis zB of the body. This means that the robot can accelerate only in this
direction. Therefore, to move in the 3D space, it is necessary to exploit the system
dynamics (G.3) by coupling the translational and the rotational motions of the robot to
follow the desired trajectory.

G.3.5 Challenges

The perception (Sec. G.3.3) and the action (Sec. G.3.4) objectives previously described are
both necessary for vision-based quadrotor navigation. Considering them simultaneously
is challenging due to the possible conflict among them. Indeed, for a quadrotor to track a
reference trajectory, it needs to rotate to align its thrust with the direction of the desired
acceleration. However, the perception objective might require to minimize such rotation
to maximize the visibility of a point of interest. A model-based optimization framework
able to consider both perception and action objectives and couple them through the
system dynamics is therefore necessary.

G.4 Model Predictive Control

Formulating coupled perception and action as an optimization problem has the advantages
of being able to satisfy the underactuated system dynamics and actuator constraints
(i.e., input boundaries) and to minimize the predicted costs along a time horizon. In
contrast, classical control schemes are incapable of predicting costs and the corresponding
trajectory (e.g., PID controllers) and guaranteeing input boundaries (PID, LQR).

The basic formulation of such an optimization is given in (G.1), which in our case results
in a non-linear program with quadratic costs. This can then be approximated by a
sequential quadratic program (SQP) where the solution of the non-linear program is
iteratively approximated and used as a model predictive control (MPC). To this regard,
for the MPC to be effective, the optimization scheme has to run in real-time, at the
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desired control frequency. To achieve this, we first discretize the system dynamics with a
time step dt for a time horizon th into xi ∀i ∈ [1, N ] and ui ∀i ∈ [1, N − 1]. We define
the time-varying state cost matrix as Qx,i ∀i ∈ [1, N ]. Furthermore, the time-varying
perception and input cost matrices are defined as Qp,i and Ri, ∀i ∈ [1, N − 1], respectively.
Finally, let z = [s, ṡ] be the perception function. It is important to recall that z is a
function of the quadrotor’s state and input variables, as remarked in Eq. (G.4) to (G.9).
The resulting cost function we consider is:

L = x̄ᵀ
NQx,N x̄N +

+

N−1∑
i=1

(x̄ᵀ
iQx,ix̄i + z̄ᵀiQp,iz̄i + ūᵀ

iRiūi) ,
(G.10)

where the values x̄, z̄, ū refer to the difference with respect to the reference of each value.
In our case, the reference value for z is the null vector (i.e., center of the image and
zero velocity) and the reference for the states and inputs are given by a target pose or a
precomputed trajectory (that neglects the perception objectives).

The inputs u, consisting of c and ΩB, as well as the velocity vWB are limited by the
constraints:

cmin ≤ c ≤ cmax, (G.11)

−Ωmax ≤ ΩB ≤ Ωmax, (G.12)

−vmax ≤ vWB ≤ vmax, (G.13)

where cmin, cmax,Ωmax, vmax ∈ R+.

To include the dynamics as in (G.3), we use multiple shooting as transcription method
and a Runge-Kutta integration scheme. We refer the reader to [99] and [98] for more
details on the transcription of the dynamics for optimization.

We approximate the solution of the optimization problem by executing one iteration at
each control loop and use as initial state the most recent available estimate xest provided
by a Visual-Inertial Odometry pipeline running onboard the vehicle (see Sec. G.5.1).
To achieve good approximations, it is important to run these iterations significantly
faster than the discretization time of the problem and to keep the previous solution
as initialization trajectory of the next optimization. Such a SQP scheme leads to a
fast convergence towards the exact solution, since the system is always close to the last
linearization, and the deviation of each state xi between two iterations is very small.
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Figure G.3: The quadrotor used for the experiments.

G.5 Experiments

In order to show the potential of our perception-aware model predictive control, we ran
our approach onboard a small, vision-based, autonomous quadrotor. We refer the reader
to the attached video showcasing the experiments.

G.5.1 Experimental Setup

We used a small and lightweight quadrotor platform to achieve high agility through
high torque-to-inertia and thrust-to-weight ratios, and improve simplicity and safety
for the user (cf. Fig G.3). The quadrotor had a take-off weight of 420 g, a thrust-to-
weight ratio of ∼ 2, and a motor-to-motor diagonal of 220 mm. We used a Qualcomm
Snapdragon Flight board with a quad-core ARM processor at up to 2.26 GHz and 2 GB

of RAM, paired with a Qualcomm Snapdragon Flight ESC. The board was equipped with
an Inertial Measurement Unit and a forward-looking, wide field-of-view global-shutter
camera tilted down by 45° for visual-inertial odometry (VIO) using the Qualcomm mvSDK.
It ran ROS on Linux and our self-developed flight stack. We setup the optimization
with ACADO [98] and used qpOASES [65] as solver. As discretization step, we chose
dt = 0.1 s with a time horizon of th = 2 s and ran one iteration step in each control loop
with a frequency of 100 Hz. Therefore, the iteration ran roughly 10× faster than the
discretization time, resulting in small deviations of the predicted state vector between
iterations and facilitating convergence. The code developed in this work is publicly
available as open-source software.

G.5.2 Experiment Description and Results

To prove the functionality and importance of our PAMPC, we ran three experiments. In
the first experiment, the controller modified a circular trajectory to improve the visibility
of a point of interest. In the second experiment, the controller handled hover-to-hover
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Figure G.4: Executed trajectory with quadrotor heading while the arrow points toward the
point of interest (blue).

flight by deviating from a straight line trajectory to keep the point of interest visible. In
the third experiment, it enabled vision-based flight in an extremely challenging scenario.
All the experiments were conducted with onboard VIO and onboard computation of the
PAMPC, without any offline computation and without any motion-capture system.

Circular Flight

We setup a small pile of boxes in the middle of a room otherwise poor of texture. We
did this to force the VIO pipeline to use such boxes as features for state estimation.
The centroid of these features was set as our point of interest. We provided the robot
with a circular reference trajectory around the aforementioned boxes and asked it to fly
along such a trajectory while maintaining the boxes visible in the center of the image (cf.
Fig. G.1). We evaluated the performance of our framework for speeds along the circle
from 1 m s−1 to 3 m s−1.

The results of one run of the circular flight experiments at 3 m s−1 are depicted in Fig. G.4.
Despite the agility of the maneuver, which requires large deviations from the hover
conditions, the robot is able to keep the point of interest visible in the onboard image.
Fig. G.9a reports the reprojection in the image plane for such point of interest.

Hover-To-Hover Flight

In this experiment within the same scenario as in Sec. G.5.2, we showed the capabilities of
our framework for hover-to-hover flight. More specifically, we requested a pose jump from
a position p1 to p2 at equal height (cf. Fig. G.7). During that maneuver, the quadrotor
had to pitch down to reach the desired acceleration, but controversially should pitch as
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Figure G.5: Quadrotor path in hover-to-hover, looking towards the centroid of tracked features
(blue), with the camera frame indicated by {xC , yC , zC}.

little as possible to keep the point of interest visible. A sequence of this experiment is
visible in Fig. G.7.

One can easily see that, despite the start and end positions are at the same height, the
quadrotor not only pitches to go towards the new reference in an horizontal motion, but
also accelerates upward (i.e., in positive z, cf. Fig. G.5). This results in a smaller pitch
angle and a higher thrust to reach the same y-acceleration, which is helpful for perception
since it brings the features towards the center of the frame due to the higher altitude.
If perception objectives were not considered, the resulting trajectory would have not
required any height change, potentially leading to a poor visibility of the point of interest.
The full motion of the quadrotor is depicted in Fig. G.5, where the exploitation of the
added height and the orientation of the camera frame can be seen. Finally, in Fig. G.9b
we show the reprojection in the image plane for the point of interest.

Darkness Scenario

This experiment was targeted towards extremely challenging scenarios, such as flight in a
very dark environment, or otherwise difficult illumination conditions (cf. Fig. G.8). To
demonstrate the performance in such a scenario, we flew the vehicle several times in a
dark room with two illuminated spots. If the illuminated spots left the field of view for a
moment, the VIO pipeline would drift quickly or even completely loose track, potentially
leading to a crash. Therefore, in such scenarios it was of immense importance to keep the
few available features always visible. The flown path was given by a trajectory passing
through four waypoints forming a rectangle, but without any heading reference. The
quadrotor correctly adjusts its heading to keep the illuminated spot in its field of view,
because this is the only source of trackable features. Fig. G.6 visualizes a setup with
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Figure G.6: Path of the quadrotor, looking towards light spots (yellow), with camera direction
(red triangle) and point-of-interest direction (blue arrow).

two spotlights and a cardboard wall in between, where the quadrotor first focuses on
the upper right illuminated spot, and further down the track switches to the second
illuminated spot behind the wall. The reprojection of the point of interest in the image
plane is shown in Fig. G.9c.
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Figure G.7: A sequence of the visibility experiment for the hover-to-hover flight experiment,
with time progressing from left to right. The quadrotor performs a maneuver to fly to a new
reference pose, exploiting additional height to pitch less and keep the point of interest (centroid of
the vision features, marked as cyan circle) in the center of the image. The corresponding footage
is available in the accompanying video.

Figure G.8: A sequence of the darkness experiment with time progressing from left to right.
The quadrotor, highlighted by a red circle in the figures in the first row, tracks a trajectory and
adjusts its heading to keep the point of interest (centroid of the vision features) in field of view.

1.5

2

2.5

3

(a) Reprojection for the circular
trajectory.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) Reprojection for the hover-to-
hover experiment.

1.5

2

2.5

3

3.5

4

(c) Reprojection for the darkness
experiment.

Figure G.9: Reprojection of the point of interest in image plane, colored according to the depth
with respect to the camera frame.
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G.6 Discussion

G.6.1 Choice of the optimizer

To implement the optimization problem, we chose to use ACADO because of two main
reasons: (i)) it is capable of transcribing system dynamics with single- and multiple-
shooting and integration schemes, as well as provide an interface to a solver; (ii)) it
generates c++ code, which then is compiled directly on the executing platform, which
allows it to use accelerators and optimizations tailored to the platform.

G.6.2 Convexity of the problem

Our state and input space is a convex domain, hence also any quadratic cost in those
is convex. The perception costs could be argued to be non-convex due to the division
by Cpfz in the projection (G.5). However, on examination of the projection one will
notice that the denominator Cpfz is always positive, since the pinhole camera projection
model does not allow negative or zero depths. We can therefore constrain Cpfz to be
positive, rendering all possible solutions in the positive halfplane R+ and therefore recover
convexity.

G.6.3 Choice of point of interest

In our experiments, we used the centroid of detected features as our point of interest.
Assuming that all the features are equally important, instead of optimizing for each
individually, we can summarize them as their centroid, which results in the same optimal
solution.

G.6.4 PAMPC Parameters

We chose a discretization of dt = 0.1 s and a time horizon of th = 2 s. One could always
argue that a longer time horizon and a shorter discretization step are beneficial, but they
also increase the computation time by roughly O(N2) with the number of discretization
nodes N = th

dt . In our experience, we could not identify any significant gain from smaller
discretization steps nor from a longer time horizon.

G.6.5 Computation Time

Since the computation time must be low enough to execute the optimization in a real
time scheme, we show that it is significantly lower than the one required by the controller
frequency of 100 Hz. Indeed, our PAMPC requires on average 3.53 ms. It is interesting to
note that this is the case for both an idle CPU and while running the full pipeline with
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VIO and our full control pipeline. This is due to the quad-core ARM CPU and the fact
that our full pipeline without the PAMPC takes up only 3 cores leaving one free for the
PAMPC. However, the standard deviation increases significantly if the CPU is under load
(from 0.155 ms to 0.354 ms), even though the maximal execution time always stays below
5 ms.

G.6.6 Drawbacks of a Two-Step Approach

An alternative approach to the problem tackled in this work is to use the differential
flatness as in [148] to plan a translational trajectory connecting the start and end positions,
and subsequentially plan the yaw angle to point the camera towards the point of interest.
After planning, a suitable controller could be used to track the desired reference trajectory.
Although possible, such a solution would lead to sub-optimal results because of the
following reasons: (i)) the roll and pitch angles of the quadrotor would be planned without
considering the visibility objective, therefore might render the point of interest not visible
in the image despite the yaw control; (ii)) because of the split between planning and
control, even if the first would provide guarantees about visibility, these could not be
preserved during the control stage due to deviations from the nominal trajectory; (iii)) it
would be challenging to provide guarantees about the respect of the input saturations.
Therefore, our proposed approach considering perception, planning and control as a single
problem leads to superior results.

G.7 Conclusions

In this work, we presented a perception-aware model predictive control (PAMPC) al-
gorithm for quadrotors able to optimize both action and perception objectives. Our
framework computes trajectories that satisfy the system dynamics and inputs limits of
the platform. Additionally, it optimizes perception objectives by maximizing the visibility
of a point of interest in the image and minimizing the velocity of its projection into the
image plane for robust and reliable sensing. To fully exploit the agility of a quadrotor,
we incorporated perception objectives into the optimization problem not as constraints,
but rather as components in the cost function to be optimized. Our algorithm is able to
run in real-time on an onboard ARM processor, in parallel with a VIO pipeline, and is
used to directly control the robot. We validated our approach in real-world experiments
using a small-scale, lightweight quadrotor platform.
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Onboard State Dependent LQR for Agile
Quadrotors

Philipp Foehn and Davide Scaramuzza

Abstract — State-of-the-art approaches in quadrotor control split the
problem into multiple cascaded subproblems, exploiting the different
time-scales of the rotational and translational dynamics. They calculate
a desired acceleration as input for a cascaded attitude controller but
omit the attitude dynamics. These approaches use limits on the desired
acceleration to maintain feasibility and robustness through the control
cascade. We propose an implementation of an LQR controller, which:
(i)) is linearized depending on the quadrotor’s state; (ii)) unifies the
control of rotational and translational states; (iii)) handles time-varying
system dynamics and control parameters. Our implementation is
efficient enough to compute the full linearization and solution of the
LQR at a minimum of 10 Hz on the vehicle using a common ARM
processor. We show four successful experiments: (i)) controlling at
hover state with large disturbances; (ii)) tracking along a trajectory;
(iii)) tracking along an infeasible trajectory; (iv)) tracking along a
trajectory with disturbances. All experiments were done using only
onboard visual inertial state estimation and LQR computation. To the
best of our knowledge, this is the first implementation and evaluation of
a state-depending LQR capable of onboard computation while providing
this amount of versatility and performance.
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Figure H.1: Flying an ellipse with state-dependent LQR control. Our quadrotor is based on a
Qualcomm Snapdragon Flight board with the Pixhawk PX4 flight stack, onboard visual inertial
odometry and commercial electronic speed controllers, motors, propeller and frame. It has a
take-off weight of 255 g.

H.1 Introduction

H.1.1 Motivation

With the recent advances in control of Micro Aerial Vehicles (MAVs), it is possible to
use them in a wide variety of applications, ranging from search and rescue scenarios,
observation, hobbyist drone racing to transportation and delivery. Many of these scenarios
include difficult, cluttered environments, such as post-disasters or emergency situations.
In all these applications, robust control of the vehicle plays a crucial role for success,
which becomes particularly challenging considering the quadrotor as an under-actuated
system with sublime agility and simplicity.

Many groups have shown examples of complex, agile maneuvers [63, 148, 158, 234, 70]
which rely on excellent tracking of a given trajectory. This tracking control is often based
on assumptions and simplifications, exploiting the time-scale separation between the
translational and rotational dynamics, but introducing certain limitations.

Richard Bellmans work on dynamic programming [22, 21] and Rudolf Kalmans optimal
control theory [106] formed the realm of the Linear Quadratic Regulator (LQR), a powerful
tool towards optimal control. Until today, LQR has often only been used to solve parts
of the control problem on MAVs, such as attitude stabilization, but never to provide
a full-state controller unifying rotational and translational states in one feedback loop.
Exactly this unified control scheme is where LQR can exceed other approaches.
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H.1.2 Related Work & Problem Statement

State-of-the-art approaches in control and trajectory generation exploit the time-scale
separation and differential flatness of these systems [150]. They rely heavily on cascaded
control schemes [95] and decouple the rotational and translational dynamics via a geometric
tracking controller as described in [122]. These control schemes leverage the desired
acceleration to prescribe the attitude, which therefore is directly affected by the over-
imposed position and velocity control. Direct control over the attitude itself is therefore
lost and the demanded acceleration is subject to several limitations in change rate,
magnitude, and direction.

On the other hand, many approaches on LQR [233] linearize the system at a given stable
state [195] or use a precomputed library of LQR gains [194]. None of these approaches
is capable of adjusting to the full state space, varying state or input costs, or changing
system parameters at execution time. Moreover, they often separate orientation and
position control, similarly to the aforementioned geometric control. Also for Model
Predictive Control (MPC), this decoupling is used to simplify the problem [191, 109].

A reason for this is surely the difficulty of applying an LQR scheme to a system where
inputs (body-frame) and states (world-frame) do not share the same reference coordinate
frame. In the example of most MAVs, this means that the attitude radically changes
the linearization, even in the simplified case of a quadrotor where often only the yaw
state is concerned. This necessitates the recomputation of the LQR whenever an attitude
change occurs, or in simplified cases at a certain rate, to handle this state-dependent
linearization.

All of these methods make use of the under-actuation property of the system, splitting the
control problem into multiple subproblems. Especially leveraging the desired acceleration
to define the attitude of the vehicle leads to complications, since it disregards the attitude
dynamics and therefore requires planned smooth trajectories which must also account
for actuator saturations. One specific problem arising from this control scheme is the
difficulty to distinguish between actually desired negative downward acceleration (wanted),
and erroneously large downward acceleration from large position errors (unwanted). This
makes it difficult to use one single control algorithm for many different maneuvers, while
keeping the interface and tuning possibilities simple and intuitive for the user. Neither
could varying system-and-control parameters be handled without significant complications.

H.1.3 Contribution

We propose a linear quadratic regulator that unifies the control of translational and rota-
tional dynamics of a quadrotor and mitigates many of the aforementioned shortcomings.
It vastly simplifies the tuning of the system, since the tuning parameters are costs that
directly relate to state errors, weighting all system states in relation to each other. To
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Figure H.2: Overeview of the control architecture implementation on the Snapdragon Flight
with measured acceleration ã and bodyrates ω̃, estimated position p̂, orientation q̂ and full state
x̂, and desired inputs u∗

achieve this, we leverage the formulation of dynamics, reference states, trajectories, and
costs to implement a state-dependent LQR. This provides a robust way to control such
a MAV not only in the reduced static state space (hover) but also along dynamic state
sequences (trajectories). The shown formulation of the dynamics can be extended with a
more detailed state description, for example the dynamics of inputs or even virtual states,
like the integral of position error. We focus here on the discrete infinite time horizon
LQR solution, but our linearization method translates without restrictions to iterative
LQR or other model predictive control schemes.

In multiple experiments, we show the robustness of our controller in various situations,
such as disturbance from hover, reference jumps, tracking of feasible as well as infeasible
trajectories and disturbance during such tracking. We use a small MAV as visible in Fig.
H.1 with all computation running onboard.

H.1.4 Structure of the Paper

We first give an overview of the control architecture, in Sec. H.2.1, since this defines our
system dynamics formulation, which is described in the following Sec. H.2.2. The LQR
control principle is outlined in Sec. H.2.3 with a detailed explanation of the linearization
of this system in Sec. H.2.4. We explain the tracking scheme used for the experiment in
Sec. H.2.5. The experiment setup, platform and control architecture is specified in Sec.
H.3. We show our results in Sec. H.4 and comment our findings the discussion Sec. H.5
followed by the conclusion Sec. H.6.

H.2 Methodology
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H.2.1 Control Hierarchy

Most quadrotors are equipped with an Inertial Measurement Unit (IMU) to get high-
frequency intrinsic measurements of the rotational velocity and linear acceleration to
stabilize the rotational dynamics, and additional extrinsic information to stabilize the
translation dynamics. This extrinsic information often comes from GPS, offboard motion
capture systems or nowadays also from onboard visual (-inertial) odometry, where we will
focus on the last. While the inertial sensors often work at very high frequencies, of up
to 8 kHz, to stabilize the fast rotational dynamics, visual odometry operates at a slower
rate (typically 30 Hz, visualized in Fig. H.2 and explained in Sec. H.3.2). This is still
enough to estimate position and velocity since state-of-the-art visual inertial odometry
fuses measurements from the IMU and the camera to output a higher frequency pose
estimate.

This choice of sensors is fitted specifically to multirotors. Since they produce thrust
forces and drag torques with each rotor, as long as all rotors lie in one plane, one can
simplify these forces to a collective thrust and a torque around each body axis. To control
acceleration, velocity and position, the quadrotor must adjust its orientation since the
collective thrust is always aligned with the body z-axis.

We can now split the control scheme into two domains of fast and slow dynamics. The
fast dynamics contains the bodyrates that can be measured directly by the gyroscope in
the IMU. The slow dynamics contains the orientation—which is the integral state of the
body rates—and the position and velocity—which are integral states of the acceleration—
depending on collective thrust, orientation, and gravity. Since the bodyrates are the
integral state of the torque produced by different single motor thrusts, they can be
controlled with simple feedback loops using the directly available bodyrate measurement.
From a control perspective, we intuitively separate these two domains, where the output
of the slow dynamics domain are the desired bodyrates and collective thrust. The fast
dynamics domain controls the single rotor thrusts to achieve the desired values. This
cascade vastly simplifies the control architecture but our approach fully extends to a
system where both domains are fused and controlled together. Note that this does
not imply decoupling of the rotational and translational dynamics, but using the first
derivative of the rotation as an input to the system.

H.2.2 System Dynamics

The system dynamics of a quadrotor can be described as a single rigid-body system.
Based on the assumption that the low-level bodyrate controller is faster then our LQR
controlled state, we use the bodyrates as input to our system. The bodyrates Bω are
defined in the body-fixed frame, as well as the collective normalized thrust Bc = [0, 0, c]

whereas gravity g = [0, 0, g]T is defined in world frame. Furthermore the state x consists
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of position p, orientation q and velocity v.

x = [p, q,v]T = [px, py, pz, qw, qx, qy, qz, vx, vy, vz]
T (H.1)

u = [Bωdes,B cdes]
T = [ωdes,x, ωdes,y, ωdes,z, cdes] (H.2)

We use quaternions to represent the orientation of the quadrotor to avoid singularities
(gimbal lock) due to angle representation. We will drop the prefix B[ ] for the body
frame from now on. The system dynamics can then be described in a simplified form as:

ṗ = v, q̇ =
1

2
q ⊗

[
0

ω

]
, v̇ = g + q � c, (H.3)

where ⊗ is the quaternion multiplication and � is the quaternion rotation as:

q1 ⊗ q2 = Q×(q1)q2 = Q̄
×

(q2)q1 (H.4)

q1 � v = R×(q)v. (H.5)

Q×(q) is the quaternion multiplication matrix and R×(q) is a rotation matrix with

Q× (q) =


qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

 (H.6)

Q̄
×

(q) =


qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 (H.7)

Q̄
×

(q) = Q× (q̄) (H.8)

Q̄
×T

(q)Q×(q) =

[
1 0
0 R× (q)

]
. (H.9)

This results in the full equations for velocity and orientation as:

v̇ = g +R×(q)c =

 2(qwqy + qxqz)c

2(qyqz − qwqx)c

−g + (1− 2q2x − 2q2y)c

 (H.10)
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q̇ =
1

2
Q̄
×
([

0

ω

])
q =

1

2


−ωxqx − ωyqy − ωzqz
ωxqw + ωzqy − ωyqz
ωyqw − ωzqx + ωxqz
ωzqw + ωyqx − ωxqy

 . (H.11)

H.2.3 Linear Quadratic Regulator

A Linear Quadratic Regulator provides the optimal solution for a given linear time-
invariant system

ẋ = Ax+Bu (H.12)

at the reference state x0 and input u0 with respect to a user-defined quadratic cost given
by the two positive-definite cost matrices Q and R. We define the cost-to-go for the
infinite-time solution as:

J (x,u) =

∫ ∞
0
x̃TQx̃+ ũTRũ dt (H.13)

with the errors x̃ = x−x0 and ũ = u−u0. Assume that the optimal cost-to-go is of the
quadratic form J∗(x) = xTPx. The solution for P can be found using the Continuous
Algebraic Riccati Equation

0 = PA+ATP − PBR−1BTP +Q (H.14)

and results in

u = u0 +K(x− x0) with K = −R−1BTP (H.15)

as the optimal feedback-policy. To solve the problem, we use a dynamic programming
approach as described in [233].

H.2.4 Linearization

To calculate the LQR, the full linearization of the system is needed. Instead of just
calculating all partial derivatives, we see from (H.3) that most entries of A and B are
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independent:

A(q,u) =
∂

∂q
f(q,u) =

0 0 ∂
∂v ṗ

0 ∂
∂q q̇ 0

0 ∂
∂q v̇ 0

 (H.16)

B(q,u) =
∂

∂u
f(q,u) =

 0 0
∂
∂ω q̇ 0

0 ∂
∂c v̇

. (H.17)

Therefore, we calculate only the required derivatives in the following sections.

Preface: Partial Derivatives w.r.t. Unit Quaternions

Since the orientation is represented with a unit quaternion , this induces a constraint on
the respective states so that ‖q‖ = 1. When deriving a function of this unit quaternion,
the constraint does no longer hold for the derivative. To make the constraint generally
valid, we discard it for the general quaternion q and enforce a specific unit quaternion
qu = q · ‖q‖−1. The derivation then yields:

∂

∂q
f (qu) =

∂

∂qu
f (q) · ∂

∂q

(
q · ‖q‖−1

)
∂

∂q

(
q · ‖q‖−1

)
=

∂

∂q
q · ‖q‖−1 + q · ∂

∂q
‖q‖−1

= ‖q‖−1 · 1− q · ‖q‖−2 · ∂
∂q
‖q‖

= ‖q‖−1
(
1− ‖q‖−2qqT

)
(H.18)

Position

As in (H.3), the position is the integral of the velocity in the same frame, all partial
derivatives are zero except for the

∂

∂v
ṗ = 1. (H.19)

207



Appendix H. Onboard State Dependent LQR for Agile Quadrotors

Orientation

From (H.3), we can see that it only depends on the orientation q and the bodyrates ω.
From this, we get for the partial derivative with respect to the orientation:

∂

∂q
q̇ =

1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 · 1− ‖q‖−2qqT‖q‖ (H.20)

and similar for the derivation with respect to bodyrates:

∂

∂ω
q̇ =

1

2


−qx −qy −qz
qw −qz −qy
qz qw qx
−qy qx qw

. (H.21)

Velocity

From (H.3), we also get the partial derivatives from the quaternion rotation function and
the thrust:

∂

∂q
v̇ = 2c

 qy qz qw qx
−qx −qw qz qy
qw −qx −qy qz

 · 1− ‖q‖−2qqT‖q‖ (H.22)

∂

∂c
v̇ =

 (qwqy + qxqz)

(qyqz − qwqx)

(q2w − q2x − q2y + q2z)

. (H.23)

H.2.5 Trajectory Tracking Scheme

To track the reference state along a predefined trajectory, one could use multiple tracking
schemes, for example:

• temporal tracking where the reference state x0(t) is chosen based on the passed
time,

• spatial tracking where the reference state x0(p) closest to the position of the
system is chosen.
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Figure H.3: Our Quadrotor seen from below with a 30 cm ruler. The Snapdragon Flight is
visible on top with the global shutter camera. Four "DYS SN20A" ESCs are placed in the arms of
the "RKH 250" frame to feed the "DYS BX1306-3100kV" motors with "Gemfan 5030" propellers.

Since temporal tracking requires the system to follow the trajectory with exact computed
timing, it is often less robust against disturbances and model uncertainties. Therefore,
we chose spatial tracking, similarly to the approach in [7]. In each control loop, we search
on the remaining trajectory for the reference state that minimizes the spatial distance to
the actual vehicle position.

H.3 Experimental Setup

H.3.1 Experiment Platform

Our experiment platform is designed to be lightweight and easy to operate. We achieved
this at a total take-off weight of 255 g. The combination of such low inertia and a carbon
fiber frame make it extremely robust. It consist of consumer-grade electronic speed
controller (ESC), motors, propellers, and a frame with 250 mm diagonal motor distance.
Using this components, it can deliver a maximal thrust-to-weight ratio of ∼ 2. As flight
controller, we use a Snapdragon Flight1 single-board solution, visible in Fig. H.3. It
includes a computational unit, IMU, front-facing color camera at a 4k-resolution and
down-facing global-shutter gray-scale camera at VGA resolution.

1Qualcomm: developer.qualcomm.com/software/machine-vision-sdk
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Figure H.4: Position error during a hover task. The vehicle was disturbed by pulling it away
from its reference point as seen in the accompanying video.

H.3.2 Control Architecture

The main software is split into a fast low-level controller for the bodyrates and our super-
imposed high-level LQR controller, as already described in Sec H.2.1. This architecture is
illustrated in Fig. H.2. On the Snapdragon Flight’s Application Digital Signal Processor
(aDSP); the low-level controller runs in the form of the PX42 flight stack. This controller
reads the IMU onboard the Snapdragon Flight with 8 kHz and computes the PWM signal
for the ESC from the desired bodyrates and collective thrust.

The high-level controller runs on the main processor (2.26 GHz quad-core ARM) using
Linaro Linux3 provided by Intrinsyc4 with ROS5. To get an accurate state estimate, we use
a Visual Inertial Odometry (VIO) by Qualcomm. The IMU readings are down-sampled
and forwarded to the VIO pipeline at 250 Hz together with a VGA gray-scale image from
the down-facing global-shutter camera at 30 Hz. The pose estimate after each camera
frame is fed back to the PX4 flight stack, which fuses it together with IMU signals to get
a low drift, high frequency state estimate at 250 Hz.

Our proposed LQR controller uses this estimate to compute the target bodyrates and
collective thrust at 100 Hz. Furthermore, it recalculates the cost-optimal gain matrix K
from (H.15) at 10 Hz using the linearization of the system at the most recent estimated
state. To chose the tracking reference, we use the the spatial tracking scheme from Sec.
H.2.5 due to better handling of model uncertainties and disturbances. All experiments
were done with the quadratic cost terms set toQ = diag([100, 100, 100, 1, 1, 1, 1, 10, 10, 10])

and R = diag([1, 5, 5, 0.1]), while the inputs were limited at ‖Bωdes‖ ≤ 2 rad s−1 and
2 m s−2 ≤B cdes ≤ 18 m s−2 for all experiments.

2PX4 flight stack: www.px4.io
3Linaro: www.linaro.org
4Intrinsic: www.intrinsyc.com
5Robot Operating System: www.ros.org
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Figure H.5: Position during step changes in the reference all 5 seconds. The dashed line marks
the reference, while the full line marks the estimate.
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Figure H.6: Input ωy with reference px,ref , position px and velocity vx during step changes in
the reference.

H.3.3 Experiment Description

We perform four different experiments to show basic stability of our controller: hover with
reference jumps and disturbances (H.3.3); tracking a feasible minimum-snap trajectory
(H.3.3); tracking an infeasible trajectory (H.3.3); disturbing the vehicle during tracking
a feasible trajectory (H.3.3). For all experiments, we use onboard VIO only, without
any external motion capture system. Because the floor and walls provide practically no
texture, we place some textured carpets in the room.

Hover with Reference Jumps and Disturbances

In this experiment we let the vehicle hover and apply step-changes to the reference
and disturbances by pulling the vehicle from its hover position. While the reference is
momentarily constant, we still apply the state-dependent LQR to adjust to the estimated
vehicle state. No trajectory or feasibility checks are needed, since the pure state-feedback
is enough to stabilize the vehicle around and towards the reference.
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Figure H.7: View from each world axis on a feasible minimum-snap trajectory with vmax =
3.0 m s−1 executed using only VIO and our state-dependent LQR. Note the error in z-direction
due to thrust uncertainties.

Tracking a Feasible Trajectory

We generate a feasible trajectory using the minimum-snap approach from [148]. For this,
we set four waypoints at positions pms0 = [0,−1.2, 0]T , pms1 = [1.5, 0, 0.5]T , pms2 =

[0, 1.5, 0]T , pms3 = [−1.5, 0, 0.5]T and compute a minimum-snap trajectory sampled with
dt = 0.1 s. We limit the velocity to 3.0 m s−1. This results in a trajectory close to an
ellipse, except for the start and end phase.

Tracking an Infeasible Trajectory

In this experiment, we show the stability of the controller with respect to infeasible
references. We generate a perfectly elliptical trajectory, parametrized with respect to
the angle α by pell(α) = [rx sin(α),−ry cos(α), rz sin(α)]T with rx = 1.5 m, ry = 1.2 m,
rz = 0.5 m and a sample with dα = 2π/36. The velocity is set to point from one reference
point to the next one with a magnitude of 2.0 m s−1. The reference orientation is perfectly
horizontal as in hover. Note that, therefore, the velocity is discontinuous, the acceleration
is infeasible, and no feed-forward part exists.

Tracking with Disturbance

We generate a feasible trajectory as in H.3.3 but with a lower maximal velocity of 1.0 m s−1.
During execution, we stop the vehicle by holding or pulling it away from the trajectory.
Because of the spatial tracking, it continues along the trajectory without skipping any
segments, which instead could happen in temporal tracking as mentioned earlier (H.2.5).

H.4 Results

All experiments are visible in the accompanying video at: https://youtu.be/8OVsJNgNfa0
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Figure H.8: Stabilizing the vehicle along an unfeasible trajectory. Note the deviation outward
of the ellipse due to unfeasible velocity and attitude reference, resulting in a error of ∼0.5 m.
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Figure H.9: Trajectory tracked with a human operator disturbing (pulling) the vehicle. Note
the convergence back to the trajectory without skipping segments due to spatial tracking.

H.4.1 Hover with Reference Jumps and Disturbances

First, we note the non-zero static error in position tracking, which results from model
uncertainties and the lack of an integrative part in the controller. In Fig. H.4, we can
see the position error due to a large disturbance by a human. Note how the disturbance
is rejected with very little overshoot. Another property is the bounded velocity due to
position- and velocity-error saturation. In Fig. H.5, we depict the reaction to jumps in the
reference. Note how small deviations from the z-axis setpoint are caused by large jumps
in x and y as a trade-off to lower the quadratic state cost as fast as possible. Additionally,
we show the an input in Fig. H.6 during a reference jump. Note that the input jumps
due to the instantaneous jump in the reference, but otherwise is smooth even over the
updates of the LQR gains at 10 Hz.
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H.4.2 Tracking a Feasible Trajectory

While tracking a feasible trajectory introduces no more complexity than our hover
experiment except for a moving reference state, we expect the same results as in H.4.1. In
fact, we can again observe some small offset from the reference trajectory, as depicted in
Fig. H.7, resulting from model uncertainties. The biggest influence is the uncertainty of
the collective thrust, since this can change with battery voltage and is not accounted for
in the low level controller, resulting in the observable deviation in z-direction (calibrated
to minimal z-error in hover at 70% charging state). We can observe this deviations in
the first and second plot in Fig. H.7, as well as the non symmetry of it due to gravity.
This results in a too low position when moving upward, and a too high position when
moving downward. The last plot of Fig. H.7 shows the x, y-plane depicting the horizontal
tracking performance with little position error.

H.4.3 Tracking an Infeasible Trajectory

With this experiment, we want to show stability of the controller when the reference is
infeasible. We can see in Fig. H.8 how the vehicle deviates outward from the reference
trajectory due to the lack of a correct reference attitude and infeasible velocity changes.
Still, the controller manages to follow the trajectory and stabilize the vehicle, with a
trade-off in positional accuracy.

H.4.4 Tracking with Disturbance

In our last experiment, we show how the spatial tracking performs under significant
disturbances during execution, depicted in Fig. H.9. While a time-based tracker would
not account for the disturbance and possibly skip segments after a disturbance, our spatial
tracker is not influence by catching, holding and pulling the vehicle from the trajectory.
The algorithm for spatial tracking simply keeps the reference at the last sample point
while we hold the vehicle back. As soon as we release the vehicle, it converges back onto
the trajectory and continues tracking without skipping any segments, as visible in our
video. Note that this adds to the robustness of the implementation and covers many
failure scenarios introduced by disturbance as well as model uncertainties.

H.4.5 Computation Time

Our algorithm computes the solution for the state-dependent LQR at 10 Hz with a mean
computation time of t̄c = 36 ms with a standard deviation of σc = 11 ms in an average of
n̄i = 41 iterations.
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H.5 Discussion

In this work, we showed the fundamental applicability of state-dependent and, therefore,
time-varying LQR control on a MAV with real experiments, where other approaches only
show LQR control for attitude (linearized around one reference state) or only deliver
simulation results. While we did not directly compare to other approaches, we intended
to mitigate problems of hierarchical control schemes and show the feasibility of the
state-dependent LQR approach using our implementation, proven by our experiments.
Two topics remain up for discussion: (H.5.1) optimality under uncertainties due to state
estimation and (H.5.2) extensions of our approach.

H.5.1 Separation Principle

Since modern MAVs use visual integral state estimation as in our approach, it is interesting
to discuss the stability of our controller in conjunction with such an estimator. Many
of these estimators are based on a Kalman filter as in [157, 57]. Due to the separation
principle, the combination of such an estimator and an LQR will still be stable and
optimal if both individual components are stable. Therefore, this approach is valid for a
wide variety of state estimation pipelines.

H.5.2 Extension of our Approach

The true advantage of our controller and linearization is its possible extensions, such as:
(i)) integral states to counteract steady-state errors; (ii)) implementation of an actuator
dynamics model to cover uncertainties and actuator limitations; (iii)) development of
a iterative LQR for planning and model predictive control; (iv)) predictive control for
cost-field-based obstacle avoidance; (v)) extension to other platforms. We will build upon
our findings and investigate the implementation of these extensions to develop a more
elaborate control pipeline.

H.6 Conclusion

We proposed a state-dependent LQR which couples the translational and rotational states
of the vehicle, and provides the dynamics and linearization needed. We implemented this
approach on a lightweight quadrotor using a low-power Qualcomm ARM platform and
run all state estimation, LQR computation and controller onboard. Our implementation
is efficient enough to update the LQR gains at 10 Hz and our experiments prove feasibility
and robustness with this control approach.
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