
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020 1

Learning Depth with Very Sparse Supervision
Antonio Loquercio1, Alexey Dosovitskiy2 and Davide Scaramuzza1

Abstract—Motivated by the astonishing capabilities of natural
intelligent agents and inspired by theories from psychology, this
paper explores the idea that perception gets coupled to 3D
properties of the world via interaction with the environment.
Existing works for depth estimation require either massive
amounts of annotated training data or some form of hard-coded
geometrical constraint. This paper explores a new approach to
learning depth perception requiring neither of those. Specifically,
we propose a novel global-local network architecture that can
be trained with the data observed by a robot exploring an
environment: images and extremely sparse depth measurements,
down to even a single pixel per image. From a pair of consecutive
images, the proposed network outputs a latent representation of
the camera’s and scene’s parameters, and a dense depth map.
Experiments on several datasets show that, when ground truth
is available even for just one of the image pixels, the proposed
network can learn monocular dense depth estimation up to 22.5%
more accurately than state-of-the-art approaches. We believe that
this work, in addition to its scientific interest, lays the foundations
to learn depth with extremely sparse supervision, which can be
valuable to all robotic systems acting under severe bandwidth or
sensing constraints.

Index Terms—Deep Learning for Visual Perception; AI-Based
Methods; Autonomous Agents.

I. INTRODUCTION

UNderstanding the three-dimensional structure of the world
is crucial for the functioning of robotic systems: for

instance, it supports path planning and navigation, as well as
motion planning and object manipulation. Animals, including
humans, obtain such three-dimensional understanding naturally,
without any specialized training. By observing the environment
and interacting with it [1], they learn to estimate (possibly non-
metric) distances to objects using stereopsis and a variety of
monocular cues [2], [3], including motion parallax, perspective,
defocus, familiar object sizes. Could a robotic system acquire
a metric understanding of its surrounding from a similar
feedback?

Endowing robots with such an ability would be valuable for
several applications. Consider for example a swarm of nano
aerial vehicles, whose task is to explore a previously unseen
environment [4], [5]. Constrained by the size and battery life,
each robot can only carry limited sensing, e.g. a camera and a

Manuscript received: February, 20, 2020; Revised May, 19, 2020; Accepted
June, 19, 2020. This paper was recommended for publication by Cesar Cadena
upon evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the SNSF-ERC Starting Grant, Intel, and the
Swiss National Center of Competence Research (NCCR) Robotics, through
the Swiss National Science Foundation.

1Robotics and Perception Group http://rpg.ifi.uzh.ch/, Dep. of Informatics,
University of Zurich, and Dep. of Neuroinformatics, University of Zurich and
ETH Zurich, Switzerland loquercio@ifi.uzh.ch

2Google Research, Berlin, Germany
Digital Object Identifier (DOI): 10.1109/LRA.2020.3009067

RGB-Image Struct2Depth [7] Ours
Fig. 1. We train a depth perception system with what would be available
to a robot interacting with the environment: images and very sparse depth
measurements. When trained in such sparse regimes (up to a single pixel
per image), our approach learns to perceive depth with higher accuracy than
state-of-the-art methods.

1D distance sensor. Learning to estimate dense metric depth
maps from such on-board sensors during operation would allow
efficient exploration and obstacle avoidance [6].

Classically, multi-view geometry methods are used to recon-
struct the 3D coordinates of points given their corresponding
projections in multiple images. These geometric approaches,
carefully engineered over decades, demonstrate impressive
results in a variety of settings and applications [8]. One
downside of this class of approaches is that they are using only
some of the depth cues (mainly stereo and motion parallax),
but typically do not exploit more subtle monocular cues, such
as perspective, defocus or known object size. Unsupervised
learning approaches to depth estimation [9], [10], [7] combine
geometry with deep learning, with the hope that deep networks
can learn to utilize the cues not used by the classic methods. In
these approaches, depth estimators are trained from monocular
or stereo video streams, using photometric consistency between
different images as a loss function. Unsupervised learning
approaches are remarkably successful in many cases, but they
are fundamentally based on hard-coded geometry equations,
which makes them potentially sensitive to the camera model
and parameters, as well as difficult to tune.

A. Contributions

The present work is motivated by the following question: can
a three dimensional perception system be trained with the data
that a robot would observe interacting with the environment?

http://rpg.ifi.uzh.ch/
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To make the problem tractable, we make two assumptions.
First, motivated by the extensive evidence from psychology
and neuroscience on the fundamental importance of motion
perception [11], [12], we provide pre-computed optical flow as
an input to the depth estimation system. Optical flow estimation
can be learned either from synthetic data [13], [14] or from
real data in an unsupervised fashion [15]. Second, we assume
at training time the availability of images and only very sparse
depth ground truth (just few pixels per image), similar to what a
robot might collect with a 1-D distance sensor while navigating
an environment.

To learn a depth estimator from such assumptions, we design
a specialized global-local deep architecture consisting of two
modules, global and local. The global module takes as input
two images and optical flow between them and outputs a
compact latent vector of “global parameters”. We expect those
parameters to encode information about the observer’s motion,
the camera’s intrinsics, and scene’s features, e.g., planarity.
The local module then generates a compact fully convolutional
network, conditioned on the “global parameters”, and applies
it to the optical flow field to generate the final depth estimate.
The global and the local modules are trained jointly end-to-end
with the available sparse depth labels and without camera’s
pose or instrinsics ground truth.

Since the method is inspired by learning via interaction, we
evaluate it on several indoor scenarios. We compare against
generic deep architectures, unsupervised depth estimation
approaches, and classic geometry-based methods. Standard
convolutional networks show good results when trained with
dense depth ground truth, but their performance degrades
dramatically in the very sparse data regime. Unsupervised
learning-methods and classic triangulation approaches are
generally strong, but their performance in the challenging
monocular two-frame indoor scenario suffers from suboptimal
correspondence estimation due to homogeneous surfaces and
occlusions. The proposed approach outperforms all these
baselines, thanks to its ability to effectively train with very
sparse depth labels and its robustness to imperfections in optical
flow estimates.

II. RELATED WORK

The problem of recovering the three-dimensional structure
of a scene from its two-dimensional projections has been
long studied in computer vision [16], [17], [18], [19]. Classic
methods are based on multi-view projective geometry [20].
The standard approach is to first find correspondences between
images and then use these together with geometric constraints
to estimate the camera motion between the images (for instance,
with the eight-point algorithm [18]) and the 3D coordinates of
the points (e.g., via triangulation [17]). Numerous advanced
variations of this basic pipeline have been proposed [21],
[22], [23], [24], improving or modifying various its elements.
However, key characteristics of these classic methods are that
they crucially rely on projective geometry, require laborious
hand-engineering, and are not able to exploit non-motion-
related depth cues.

To make optimal use of all depth cues, machine learning
methods can either be integrated into the classic pipeline, or

replace it altogether. The challenge for supervised learning
methods is the collection of training data: obtaining ground
truth camera poses and geometry for large realistic scenes can
be extremely challenging. An alternative is to train on simulated
data, but then generalization to diverse real-world scenes can
become an issue. Therefore, while supervised learning methods
have demonstrated impressive results [25], [26], [27], [28], it
is desirable to develop algorithms that function in the absence
of large annotated datasets.

Unsupervised (or self-supervised) learning provides an
attractive alternative to the label-hungry supervised learning.
The dominant approach is inspired by classic 3D reconstruction
techniques and makes use of projective geometry and photomet-
ric consistency across frames. Existing works use various depth
representations for this task: voxel grids [29], point clouds [30],
triangular meshes [31] or depth maps [9], [10], [32], [33]. In
this work we focus on the depth map representation. Among
the methods for learning depth maps, some operate in the stereo
setup (given a dataset of images recorded by a stereo pair of
cameras) [9], [32], while others address the more challenging
monocular setup, where the training data consists of monocular
videos with arbitrary camera motions between the frames [10],
[33]. Reprojection-based approaches can often yield good
results in driving scenarios, but they crucially rely on geometric
equations and precisely known camera parameters (one notable
exception being the recent work in [34], which learns the
camera parameters automatically) and enough textured views.
In contrast, we do not require knowing the camera parameters
in advance and are robust in low-textured indoor scenarios.

Several works, similar to ours, aim to learn 3D represen-
tations without explicitly applying geometric equations [35],
[36], [37]. A scene, represented by one or several images, is
encoded by a deep network into a latent vector, from which,
given a target camera pose, a decoder network can generate new
views of the scene. A downside of this technique is that the 3D
representation is implicit and therefore cannot be directly used
for downstream tasks such as navigation or motion planning.
Moreover, at training time it requires knowing camera pose
associated with each image. Our method, in contrast, does
not require camera poses, and grounds its predictions in the
physical world via very sparse depth supervision. This allows
us to learn an explicit 3D representation in the form of depth
maps.

III. METHODOLOGY

A. Model architecture

Given two monocular RGB images I1, I2, with unknown
camera parameters and relative pose, as well as the optical
flow w between them, we aim to estimate a dense depth map
corresponding to the first image. We assume to have an artificial
agent equipped with a range sensor, which navigates through an
indoor environment. By doing so, it collects a training dataset
of image pairs, with depth ground truth d available only for
extremely few pixels. Using this sparsely annotated dataset,
we train a deep network Fθ(I1, I2,w), with parameters θ, that
predicts a dense depth map d̂ over the whole image plane. We
now describe the network architecture in detail.
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Fig. 2. Global-local model architecture. An image pair and an estimated flow field are first fed through the global module that estimates the
“global parameters” vector g, representing the camera motion. From these global parameters, the local module generates three convolutional
filter banks and applies them to the optical flow field. The output of the local module is then processed by a convolution to generate the final
depth estimate.

An overview of the global-local network architecture is
provided in Figure 2. The system operates on an image pair
I1, I2 and the optical flow (dense point correspondences) w
between them. In this work, we estimate the flow field with
an off-the-shelf optical flow estimation algorithm, which is
neither trained nor tuned on our data.

The rest of the model is composed of two modules: a
global module G that processes the whole image and outputs
a compact vector of “global parameters” and a local module L
that applies a compact fully convolutional network, conditioned
on the global parameters, to the optical flow field. This design
is motivated both by classic 3D reconstruction methods and
by machine learning considerations. Establishing an analogy
with classic pipelines, the global module corresponds to
the relative camera pose estimation, while the local module
corresponds to triangulation – estimation of depth given
the image correspondences and the camera motion. These
connections are described in more detail in the supplement.
From the learning point of view, we aim to train a generalizable
network with few labels, and therefore need to avoid overfitting.
The local module is very compact and operates on a transferable
representation – optical flow. The global network is bigger and
takes raw images as input, but it communicates with the rest of
the model only via the low-dimensional bottleneck of global
parameters, which prevents potential overfitting.

The “global module” G is implemented by a convolutional
encoder with global average pooling at the end. The network
outputs a low-dimensional vector of “global parameters” g =
G(I1, I2,w). The idea is that the vector represents the motion
of the observer, although no explicit supervision is provided
to enforce this behavior. While the optical flow alone is in
principle sufficient for ego-motion estimation, we also feed
the raw image pair to the network to supply it with additional
cues.

The “local module” L takes as input the generated global
parameters g, as well as the optical flow field. First, the global
parameter vector is processed by a linear perceptron that outputs
several convolutional filters banks, collectively denoted by ϕ =

LP (g). Then, these filter banks are stacked into a small fully
convolutional network Cϕ that is applied to the optical flow
field. We append two channels of x- and y- image coordinates
to the input w of Cϕ, as in CoordConv [38]. The output of
Cϕ is the final depth prediction d̂ = Cϕ(w).

This design of the local module is motivated by classic
geometric methods: for estimating the depth of a point it is
sufficient to know its displacement between the two images, its
image plane coordinates, and the camera motion. In contrast
to this standard formulation of triangulation, we intentionally
make the receptive field of the network larger than 1× 1 pixel,
so that the network has the opportunity to correct for small
inaccuracies or outliers in the optical flow input.

B. Loss function

Similarly to previous work [27], [26], we define the loss on
the inverse depth ẑ .

= d̂
−1

. This is a common representation
in computer vision and robotics [39], [22], which allows to
naturally handle points and their uncertainty over a large range
of depths. We use the L1 loss on the inverse depth, averaged
over the subset P of the pixels that have associated ground
truth inverse depth z:

Ldepth =
1

|P |
∑
i∈P
|ẑi − zi|. (1)

To encourage the local smoothness of the predicted depth
maps, we add an L1 regularization penalty on the gradient
∇ẑ = (∂xẑ, ∂y ẑ) of the estimated inverse depth. Similarly to
classic structure from motion methods and unsupervised depth
learning literature [32], we modulate this penalty according to
the image gradients ∂I1, allowing depth discontinuities to be
larger at points with large ∂I1:

Lsmooth =
1

|Ω|
∑
i∈Ω

|∂xẑi| e−|∂xI
i
1| + |∂y ẑi| e−|∂yI

i
1|, (2)

with Ω representing the full image plane. The full training
loss of our network is a weighted sum of these two terms
Ltotal = λpLdepth + λsLsmooth.
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TABLE I

METRICS FOR QUANTITATIVE EVALUATION OF DEPTH ACCURACY. d IS THE GROUND TRUTH DEPTH, d̂ IS THE PREDICTION. FOR
CONVENIENCE WE DENOTE Elog

.
= log(d/d̂) = log d− log d̂. FOR ALL METRICS, LOWER IS BETTER.
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Fig. 3. Qualitative comparison of the depth maps generated with the baselines and our approach. Overall, Struc2Depth’s predictions are
generally poor in homogeneous and repetitive regions, while DispNet tends to over-smooth depth maps. In contrast, our method can predict
fine details of the scene geometry.

C. Model details

In all our experiments the input images have resolution
256× 192 pixels. Unless mentioned otherwise, ground truth
depth is provided for a single pixel of each image, but we
also experiment with denser ground-truth signals. We use a
pre-trained PWC-Net [14] for optical flow estimation.

We use the Leaky ReLU non-linearity in all networks. The
global module is implemented by a 5-layer convolutional
encoder with the number of channels growing from 16 to
256, with stride 2 in the first 4 layers. The last 256-channel
hidden layer is followed by a convolution with 6 channels
and global average pooling, resulting in the 6-dimensional
predicted global parameter vector g. The local module consists
of a single linear perceptron which transforms g linearly to
a 3.9K vector. Empirically, we did not find an advantage in
utilizing a multi-layer non-linear perceptron in place of the
linear operation. The resulting vector is split into three parts,
which are reshaped into filter banks with kernel size 3 × 3
and number of output channels 20, 10, 20, respectively. These
filter banks, with Leaky ReLUs in between, constitute the
compact fully-convolutional depth estimation network Cϕ. The
20-channel network output is then processed by a single 3× 3
convolutional layer to shrink the channels to 1. The design
of this compact fully convolutional network has been inspired
by the refinement layer used by previous works on supervised
depth estimation [27], [26].

We train the model with the Adam optimizer [40] with
an initial learning rate of 10−4 for a total of approximately
94K iterations with a mini-batch size of 16. We apply data

augmentation during training. Further details are provided in
the supplement.

IV. EXPERIMENTS

Navigating a physical agent in the real world to collect
interaction data is challenging due to problem spanning
perception, planning, and control. Therefore, in order to
isolate the contribution of our proposed method, we simulate
distance observations from a navigation agent, e.g. nano-
drones [5], by masking out all depth ground truth except
for a single one on several depth estimation benchmarks.
Specifically, we test the approach on three datasets collected
in cluttered indoor environments, either real or simulated:
Scenes11, Sun3D, and RGB-D. Scenes11 [27] is a large
synthetic dataset with randomly generated scenes composed
of objects from ShapeNet [43] against diverse backgrounds
composed of simple geometric shapes. SUN3D [44] is a large
collection of RGB-D indoor videos collected with a Kinect
sensor. RGB-D SLAM [45] is another RGB-D dataset collected
with Kinect in indoor spaces.

For all datasets, we use the splits proposed by [27]. As
commonly done in two-view depth estimation methods and
in structure-from-motion methods [8], [27], we resolve the
inherent scale ambiguity by normalizing the depth values such
that the norm of the translation vector between the two views is
equal to 1. To quantitatively evaluate the generated depth maps,
we adopt three standard error metrics summarized in Table I.
We compare to both standard convolutional neural networks,
unsupervised methods, and classic structure from motion
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Method Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Eigen [25] 0.045 0.57 0.77 0.072 0.82 0.38 0.046 0.54 0.37
DispNet [41] 0.038 0.51 0.70 0.041 0.49 0.33 0.038 0.45 0.36
FCRN [42] 0.041 0.52 0.74 0.047 0.44 0.30 0.042 0.45 0.35
Small Enc-Dec 0.046 0.66 0.83 0.064 0.73 0.45 0.049 0.58 0.46
Struct2Depth [7] 0.058 0.95 0.81 0.037 0.44 0.27 0.037 0.44 0.48
Struct2Depth [7] + Flow 0.056 0.94 0.79 0.036 0.42 0.27 0.035 0.42 0.45
Ours 0.031 0.43 0.61 0.035 0.37 0.25 0.033 0.37 0.33

TABLE II
IN THE SPARSE TRAINING REGIME, OUR METHOD CAN EFFICIENTLY LEARN TO PREDICT DEPTH FROM SINGLE POINT SUPERVISION,

OUTPERFORMING SIGNIFICANTLY BOTH STANDARD ARCHITECTURES AND UNSUPERVISED DEPTH ESTIMATION SYSTEMS. FOR ALL ERROR
METRICS, LOWER IS BETTER.

methods. Additional quantitative and qualitative comparisons
are provided in the supplementary material.

A. Learning from very sparse ground truth

We compare the proposed global-local architecture to strong
generic deep models – the encoder-decoder architecture of
Eigen et al. [25], the popular fully convolutional architecture
DispNet [41], and the multi-scale encoder-decoder of Laina
et al. (FCRN) [42]. For a fair comparison with our method,
we provide all the baselines with both the image pair and
the optical flow field. Specifically, we generate input samples
by concatenating the image sequence and the flow on the
last dimension. We additionally tune the models to reach best
performance on our task. The details of the tuning process
are reported in the appendix. We also compare to a reduced-
sized DispNet [41] (Small Enc-Dec), that has a number of
parameters similar to our model (including both the global
and the local module). Its encoder consists of 4 convolutions
with (16, 32, 54, 128) filters, with sizes of (7, 5, 3, 3), and
stride 2. Its decoder is composed of 4 up-convolutions with
(128, 64, 32, 16) filters of size 3 and stride 1. Encoder and
decoder layers are connected through skip connections. Finally,
we compare against Struct2Depth [7], current state-of-the-art
system for unsupervised depth estimation.

As shown in Table II, our approach outperforms all the
baselines in the sparse supervision regime. Specifically, we
outperform the architecture of Eigen et al. [25] on average
by 53%, the architecture of Laina et al. [42] by 22.5%, and
the fully convolutional DispNet by 20%. Indeed, due to over-
parametrization, these baselines tend to overfit to the training
points, failing to generalize to unobserved images and locations.

This is empirically demonstrated in Fig. 4, where we plot
the depth loss on training points as a function of the number
of iterations. Decreasing the size of the architecture to address
overfitting does not however solve the problem: the Small
Enc-Dec, with number of parameters similar to our network,
achieves poor results, mainly due to its limited capacity.

Our approach also achieves on average 24% better error
than the unsupervised depth estimation baseline [7] over all
datasets and metrics. Indeed, the considered datasets represent
a challenge for geometry-based methods given the presence of
large homogeneous regions, occlusions, and small baselines
between views, which are typical factors encountered in indoor
scenes. Noticeably, the performance of Struct2Depth on the

20k 40k 60k 80k
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0.04

0.05

Abs-Inv on Scenes11

Eigen

DispNet

Ours

Fig. 4. For large networks, the loss on training points (solid lines) is
significantly higher than the validation loss (dashed lines). In contrast,
our global-local architecture learns generalizible representations.

SUN3D dataset is relatively good, boosted by the larger baseline
between views and the abundance of features. Interestingly,
providing optical flow to the unsupervised baseline only
increases performance of 3.5% on average. We hypothesize
that this is due to the fact that unsupervised methods already
estimate correspondences internally, and providing flow as
input gives redundant information.

Fig. 5 analyzes the performance of our and the DispNet
architectures (our strongest baseline) as a function of the
number of observed ground-truth pixels per image. Unsurpris-
ingly, both methods learn to predict accurate depth maps when
dense annotations (D) are available. Decreasing the amount of
supervision obviously leads to performance drops. However,
for our method the error increases on average by only 5%
when going to sparser supervision, compared to 12% for the
baseline, which leads to a large advantage over the baseline
in the single-pixel supervision regime. This shows that the
global-local architecture provides an appropriate inductive bias
for learning from extremely sparse depth ground-truth.

B. Robustness to Dynamically Changing Camera Parameters

In practical applications camera internal parameters, such as
focal length, may change through time. Indeed, environmental
changes like temperature, humidity and pressure could cause
severe variations to their nominal value. Due to these variations,
methods based on projective geometry, which are sensitive to
the accuracy of calibration parameters, can experience large
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Fig. 5. Depth estimation errors with increasing number of training pixels per image and dense supervision (D). When supervision gets
sparser, our method’s performance degrades more gracefully than the baseline.

Method Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Struct2Depth [7] 0.062 2.19 0.87 0.045 0.52 0.25 0.050 0.54 0.46
DispNet [41] 0.039 0.57 0.70 0.041 0.46 0.27 0.046 0.56 0.38
Ours 0.034 0.51 0.61 0.034 0.43 0.24 0.036 0.40 0.33

TABLE III
DEPTH ESTIMATION ERRORS WITH CAMERA INTRINSICS VARYING UP TO 20% OF THEIR NOMINAL VALUE BETWEEN VIEWS. BASED ON

PROJECTIVE GEOMETRY, UNSUPERVISED METHODS SUFFER THE MOST FROM PARAMETER UNCERTAINTY.

performance drops. Although the problem could be alleviated
by automatic re-calibration, these changes would have to be
detected in the first place and would require either collecting
multiple views of an object [46], [47] or additional sensing [48].

We empirically study the robustness of our method and
the baselines to dynamically changing camera intrinsics. In
particular, we randomly change, for each image pair, the
horizontal and vertical focal lengths, as well as the center
of projection, by up to 20% of their nominal value. The
unsupervised depth estimation baseline suffers the most from
the uncertainty in the camera intrinsics. Indeed, its estimation
error increases on average by 26% with respect to the case
in which camera parameters are correctly set. In contrast, as
our approach does not explicitly rely on projective geometry,
it does not exhibit such sensitivity to the camera parameters.
Indeed, it experiences only a small decrease in performance, of
approximately 5% with respect to the case where the intrinsics
are fixed, since the learning problem becomes more challenging.

C. Global parameters and the camera motion

According to the intuition behind our model, the global
parameters should have information about the observer’s ego-
motion between the frames, and as such should be related to
the actual metric camera motion. Here we study this relation
empirically, by training a camera pose predictor on the output
of our global module, in supervised fashion. Note that this is
done for analysis purposes only, after our full model has been
trained: at training time the model has no access to the ground
truth camera poses. Specifically, we add a small two-layer
MLP with 256 hidden units on top of the global module that

is either pre-trained with our method or randomly initialized.
We then either train the full network or only the appended
small MLP to predict the camera motion in supervised fashion
(details of the training process are provided in the supplement).

Results in Table IV show that the global parameters
indeed contain information about the camera pose. In both
training setups pre-trained network substantially outperforms
the random initialization: 17% to 64% error reduction across
datasets and metrics when only tuning the MLP and up to 11%
error reduction when training the full system. Interestingly,
our method is also competitive against classic state-of-the-art
baselines for motion estimation [27].

D. Robustness to Optical Flow Outliers

Optical flow estimation plays a central role in our learning
procedure. In this section, we study the impact of correspon-
dences’ errors to the quality of the predicted depth map.
Specifically, we compute the per-pixel Abs-Inv metric as a
function of the optical flow’s error, normalized for the image
size. The results of this study are shown in Fig. 6 for the
SUN3D dataset. Results for other datasets are available in the
appendix. Our approach (red line) can correct for outliers in
the correspondences significantly better than the traditional
triangulation approach. Interestingly, the main reason behind
this behaviour does not consist in the precision of the camera
motion estimation. Indeed, doing triangulation with either
ground truth camera motion or the motion estimated from
the global parameters (see Sec. IV-C) result in approximately
the same performance. Conversely, we hypothesize that our
approach can cope with outliers in correspondences because
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Scenes11 SUN3D RGB-D

Method rot trans rot trans rot trans

Scratch-MLP 1.3 74.4 3.6 55.5 5.3 78.4
Pretrained-MLP 0.9 26.7 2.7 32.5 4.4 51.5
Scratch-Full 0.7 10.3 1.8 25.0 3.2 30.5
Pretrained-Full 0.7 9.2 1.7 22.4 3.2 28.7

KLT [27] 0.9 14.6 5.9 32.3 12.8 49.6
8-point FF [27] 1.3 19.4 3.7 33.3 4.7 46.1

TABLE IV
ESTIMATION OF CAMERA MOTION BASED ON THE GLOBAL

PARAMETERS ESTIMATED BY OUR MODEL. WE INITIALIZE THE
GLOBAL MODULE EITHER RANDOMLY (SCRATCH) OR AS TRAINED
WITH OUR APPROACH (PRETRAINED). WE THEN APPEND A SMALL
MLP AND TRAIN SUPERVISED CAMERA MOTION PREDICTION BY
TUNING EITHER JUST THE MLP (MLP) OR THE FULL NETWORK

(FULL). AS A REFERENCE, WE ALSO REPORT THE PERFORMANCE
OF TWO CLASSIC APPROACHES. WE REPORT ROTATION (ROT) AND

TRANSLATION (TRANS) ERRORS IN DEGREES (SINCE THE
TRANSLATION VECTOR IS NORMALIZED TO 1, SEE § IV). LOWER IS

BETTER.
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Fig. 6. Relation between error in correspondences and depth error
for the local-global network and classic triangulation, either with
perfect pose (GT Pose) or with the pose provided by our fine-tuned
global network (see Sec. IV-C). Standard deviations of the errors are
shadowed. Our approach learns to filter out errors in correspondences
by exploiting its receptive field larger than one and regularities of
those errors in the data.

of the information encoded in the global parameters. Such
information not only includes the relative motion between
views, but also specifics about the scene (e.g. planarity)
and the camera intrinsics. To retrieve this information, the
global network uses monocular cues like perspective, focus, or
parallax. Conditioned on this scene knowledge and exploiting
regularities in the data, the local network can adapt to the
observed scene and filter out outliers. Such high-level reasoning
is absent in traditional triangulation.

E. Ablation study

Our architecture is based on several design choices that
we now validate through an ablation study. In particular, we
ablate the following components: (i) the use of optical flow
as an intermediate representation, (ii) the estimation of global
variables to generate convolutional filters, (iii) the use of
coordinate convolution in the fully convolutional network and

(iv) the use of the image pair, in addition to optical flow, for
the estimation of global parameters.

Abs-Inv Abs-Rel S-RMSE

Full Model 0.033 0.43 0.61
– Image Pair 0.033 0.45 0.62
– CoordConv 0.038 0.52 0.71
– Glob. Mod. 0.041 0.55 0.73
– Flow 0.052 0.73 0.81

TABLE V
ABLATION STUDY ON THE SCENES11 DATASET.

The results in Table V show that all components are
important and some have larger impact than others. The use of
optical flow and coordinate convolution are crucial since they
both provide essential cues for depth estimation. However, a
basic encoder-decoder architecture (i.e. without global variables
or coordinate convolutions) underperforms even when provided
with optical flow. Unsurprisingly, the least important factor is
providing the image pair to the global module, since, when
camera parameters are fixed, the optical flow is a sufficient
statistics of the observer’s ego-motion.

V. DISCUSSION

Motivated by the way natural agents learn to predict
depth, we propose an approach for training a dense depth
estimator from two unconstrained images given only very
sparse supervision at training time and without the explicit use
of geometry. We show that in cluttered indoor environments our
global-local model outperforms state-of-the-art architectures
for depth estimation by up to 22.5% in the sparse data regime.

Our methodology comes with some advantages and limi-
tations with respect to previous work. One of the strongest
advantage with respect to learning-based methods consists in
its ability to learn from extremely sparse data. In addition, our
method performs well in the cases where camera parameters
are unknown or corrupted by noise. However, one limitation
that our approach shares with supervised and unsupervised
methods is the lack of generalization between visually different
environments. This limitation can be softened by training
in multiple indoor and outdoor environments. With respect
to traditional geometry, our method can better cope with
outliers in correspondences, given its ability to adapt to the
scene characteristics. However, similarly to classic methods,
our approach suffers in the case of pure rotation, where
correspondences are not informative for depth. This limitation
can be overcome by adding memory to the neural network
through a recurrent connection.

In the future, we plan to address the aforementioned
limitations to increase the network performance. In addition,
we believe that a very exciting venue for future work to be
the extension of our algorithm to a more strictly interactive
procedure on a physical platform.
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VI. APPENDIX

A. Connection with Two-View Triangulation
The problem of triangulation consists of computing the 3D

coordinates of a point given its (noisy) projections on two or
more views and the camera parameters of the views. Hence,
it is a geometric problem. Following the usual formalism of
homogeneous coordinates [20], the perspective projection of a
3D point M on two cameras with projection matrices P1, P2

(comprising the intrinsic and extrinsic parameters of both views)
is given by λ1m1 = P1M and λ2m2 = P2M , where λ1, λ2

are the projective scaling factors.
Given P1, P2,m1,m2, the linear triangulation algorithm [20,

Sec.12.2], which tackles the triangulation problem in its most
general setting (projective cameras), computes the 3D point
M by minimizing the Rayleigh quotient ‖AM‖/‖M‖, where
A is the matrix

A(P1, P2,m1,m2) =

(
[m1]× P1

[m2]× P2

)
(3)

and [u]× is the cross product matrix (such that [u]× v = u× v,
for all v).

In case of multiple point correspondences {mi
1 ↔ mi

2}
for i = 1, . . . , N , the camera matrices P1, P2 appear in the
triangulation equations (3) of all of them, and hence, are
“global” variables. If the camera matrices are known, then
(i) every 3D point M i can be triangulated independently from
the rest, and (ii) the triangulated point is a function of the
point correspondences mi

1 ↔ mi
2.

M i = f(mi
1,m

i
2;P1, P2). (4)

This intuition inspired the design of our modular architecture:
First, a neural network regresses global variables which depend
only on the two views, and then those global variables are used
by a local module to generate a fully-convolutional net which
transforms point correspondences (optical flow) into depth.

B. Training Process
We train our model from scratch on the Scenes11 dataset

for approximately 150K steps using Adam as optimizer with
an initial learning rate of 1e− 4. We normalize all losses with
the number of points used to compute them. The loss weights
for depth and smoothness λp, λs are 5.0 and 2.0 respectively.
To increase generalization, we perform data augmentation at
training time by mirroring pairs on the x-axis and rotating
them 180 degrees, both 50% probability. For a fair comparison,
we trained all baselines with exactly the same strategy and
hyper-parameters on a desktop PC equipped with an NVIDIA-
GeForce 940MX. On our hardware, the global-local network
inference takes approximately 4 milliseconds, with the global
and local network requiring 4 and 1 milliseconds, respectively.
Conversely, the prediction of optical flow with PWCNet
requires 45 milliseconds per image pair.

For the pose experiments in Sec. 4.4, we trained a 2 hidden
layer MLP with 20 nodes and leaky ReLU activation function
to predict relative camera motion between frames from the
global parameters estimated by our global network. For all
datasets and all variations, we trained with an L1 loss between
estimated and real camera poses for 50K steps.

1) Tuning of Baselines: To fairly study the sparse training
setting, we tuned the baseline to reach the best performance on
the sparse training task. First, we changed the input layer of
each baseline architecture. Exactly as for ours, the baselines’
input consists of the concatenation of the image pair and
the optical flow on the last channel. Given the very sparse
supervision signal, we noticed that the ReLu activation function
generated extremely sparse and noisy gradients. Therefore,
we modified the original activation function of DispNet [41],
FCRN [42] and Eigen [25] from ReLu to LeakyRelu. This
change improved the performance of the baselines of up to
50% on average over metrics.

C. Comparison with structure from motion methods

Dense Structure from Motion (SfM) methods [22], [21]
can recover the depth map of a scene from two or more
views using projective geometry [20]. We now compare our
global-local architecture to two SfM baselines proposed by
Ummenhofer et al. [27]: one that computes correspondences
between images by matching SIFT keypoints (SfM-SIFT) and
another that uses optical flow instead [49] (SfM-Flow). Given
the correspondences, the essential matrix is estimated with
the normalized 8-point algorithm and RANSAC [20], and
further refined by minimizing the reprojection error with the
ceres library. Finally, the depth maps are computed by plane
sweep stereo and optimized with the variational approach of
Hirshmueller et al. [8].

Results in Table VI show that our approach achieves on
average 63% better error than SfM-SIFT and 43% better
error than SfM-Flow over all datasets and metrics. Indeed,
the considered datasets represent a challenge for geometry-
based methods given the presence of large homogeneous
regions, occlusions, and small baselines between views, which
are typical factors encountered in indoor scenes. In addition,
geometry-based methods are known to be subject to corre-
spondence errors, which the aforementioned factors generally
worsen. Nonetheless, our method remains competitive against
the geometry-based techniques, outperforming them on two out
of three metrics. Furthermore, as we show in the next section,
our method is much more robust to errors in the optical flow
estimates than classic triangulation.

D. Experiments with ground truth

The main intuition driving the design of our architecture
consists of the fact that the relative pose between two images
control the conversion of correspondences to depth. Since depth
can be computed analytically given the correspondences (in
non-degenerate cases), can also our model learn this relation
when correspondences are perfect or the relative pose between
cameras is given? How does it compare to the triangulation
equations in term of performance and ability to handle false
correspondences?

To answer these questions, we trained our network with either
perfect flow or given pose. As baselines, we used both the
simple triangulation equation and the SfM-pipeline presented
in Sec. 4.3, but provided with ground-truth camera motion. In
addition, we also compare our approach to linear triangulation
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Image GT Depth Struct2Depth DispNet Ours

Fig. 7. Qualitative results on the simulated Scenes11 dataset. Given the availability of noise-free depth maps for training and high quality optical
flow, our approach can learn extremely sharp depth maps, comparable to the ones learned by an encoder-decoder with dense supervision.

Image GT Depth Struct2Depth DispNet Ours

Fig. 8. Qualitative results on the SUN3D: Given the very noisy optical flow estimated by PWCNet and the presence of noise in the training
depth maps, the performance of all methods drops in this dataset. However, our approach is still able to learn smooth depth maps. Interestingly,
our model can pick up details which are not present in the ground-truth depth (top-row).

with the pose predicted by our global parameter network after
supervised refinement on ground-truth poses (see Sec. 4.4).
The results of this analysis are reported in Table VII.

Performances on Scenes11 show that, when the optical flow
generated by PWCNet are very precise, naive triangulation
performs very competitively, even outperforming the more
complex SfM method. Our network perform comparably to this
baseline, showing indeed its ability to learn the mathematical
relation between flow and depth. However, triangulation is
very sensitive to its inputs: when the precision of the extrinsic
parameters or of the correspondences decreases, its performance

drastically drops. This can be observed from the results on the
SUN3D and RGB-D datasets (Table VII), where the optical
flow generated from PWCNet is significantly worse than the
one on Scenes11. In contrast, as we show in Fig. 9, our
network can cope against these inaccuracies, outperforming
triangulation in the real datasets. However, our approach is
still not competitive with the SfM pipeline with given extrinsic
parameters on the SUN3D and RGB-D datasets: this is an
indicator of the difficulty coming from estimating good global
and local parameters when both training flows and depths are
noisy, but not of our network ability to learn the relationship
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Dataset Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Dataset-Mean 0.069 0.771 0.940 0.081 0.730 0.378 0.062 0.695 0.475
SfM-SIFT [27] 0.051 1.027 0.900 0.029 0.286 0.290 0.050 0.703 0.577
SfM-Flow [27] 0.038 0.776 0.793 0.029 0.297 0.284 0.045 0.613 0.548
Ours 0.033 0.43 0.61 0.045 0.48 0.23 0.040 0.44 0.33

TABLE VI
COMPARISON TO STRUCTURE FROM MOTION (SFM) BASELINES. OUR APPROACH OUTPERFORMS SFM METHODS ON ALL DATASETS AND METRICS,
EXCEPT FOR TWO. THIS SHOWS THAT LEARNING FROM SPARSE SUPERVISION CAN BE COMPETITIVE WITH CLASSIC GEOMETRY-BASED TECHNIQUES.

Scenes11 SUN3D RGB-D

Pe
r-

Pi
xe

l
A

bs
-I

nv
D

ep
th

E
rr

or

Normalized Flow Error

Fig. 9. Relation between per pixel flow and depth error for our method and triangulation, either with perfect pose (GT Pose) or with the
pose provided by our fine-tuned global network (see Sec. IV-C). Our approach learns to filter out errors in correspondences by exploiting its
receptive field larger than one and regularities of those errors in the data.

Dataset Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Triang.-P. Pose 0.061 0.48 0.65 0.65 0.78 0.52 0.50 0.52 0.73
Triang.-GT Pose 0.020 0.25 0.48 0.14 0.33 0.44 0.091 0.36 0.49
SfM-GT Pose [27] 0.023 0.35 0.62 0.020 0.22 0.24 0.026 0.34 0.398
Ours-GT Flow 0.015 0.24 0.46 0.026 0.26 0.20 0.040 0.35 0.32
Ours-GT Pose 0.021 0.28 0.54 0.038 0.37 0.32 0.043 0.44 0.38
Ours 0.033 0.43 0.61 0.045 0.48 0.23 0.040 0.44 0.33

TABLE VII
COMPARISON OF OUR APPROACH WITH DIFFERENT INPUT MODALITIES TO TRIANGULATION WITH PERFECT POSE, TRIANGULATION WITH

POSE ESTIMATED BY FINETUNING OUR GLOBAL NET AS IN SEC. 4.4 (P. POSE), AND THE SFM PIPELINE WITH GROUND-TRUTH POSE.
ALTHOUGH SLIGHTLY OUTPERFORMED BY THE SFM BASELINE WITH POSE INFORMATION, OUR APPROACH IS SIGNIFICANTLY BETTER
THAN NAIVE TRIANGULATION ON THE REAL DATASETS, WHERE CORRESPONDENCES ARE GENERALLY VERY NOISY, INDICATING THAT

OUR APPROACH LEARNS TO FILTER OUT THESE CORRESPONDENCE ERRORS. PROVIDING GROUND-TRUTH RELATIVE POSE BETWEEN
IMAGES OR PERFECT CORRESPONDENCES GENERALLY INCREASES THE NETWORK PERFORMANCE, SHOWING THE ABILITY OF OUR MODEL

TO LEARN THE RELATIONSHIP BETWEEN THESE TWO MODALITIES IN IDEAL CONDITIONS.

between these two modalities. Indeed, when the network is
provided with perfect correspondences, performance generally
increases.

E. Fine-tuning Optical Flow

For all our experiments above, we have always assumed a pre-
computed optical flow field is provided as input. This optical
flow, generated by the off-the-shelf PWCNet architecture [14],
was fixed throughout training. In this section, we study the case
when also the parameters of PwCNet are fine-tuned during
training with the sparse depth loss. Table VIII shows the results
of this evaluation. Interestingly, finetuning the parameters of
PWCNet performs worse than fixing them. Such finding can be
explained by the fact that the sparse depth loss is not sufficient
to train the large number of PWCNet parameters. Indeed, we
noticed a decrease in the training error of approximately 10%,

indicating an over-fitting to the observed training points. As an
additional baseline, we add to PWCNet a small convolutional
head to convert flow to depth and train everything with the
sparse depth loss. The convolutional head consists of three
convolution with (32,16,1) number of filters, stride 1 and filter
size 3. The result of this approach, presented in the first row
of Table VIII, confirms that the sparse loss does not provide
enough feedback to fine-tune correspondences.

F. Qualitative Results

We show more qualitative results of depth estimation on
the test set of our evaluation datasets in Fig. 7, Fig. 8 and
Fig. 10. Despite being trained with very sparse supervision,
our approach learns to predict smooth depth maps with sharp
edges, comparable to the ones an encoder-decoder architecture
learns with dense supervision. In contrast, an encoder-decoder
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Image GT Depth Struct2Depth DispNet Ours

Fig. 10. Qualitative results on RGB-D. Also this dataset represents a challenge for all methods, given the large baseline between views, noisy
correspondences and noisy training depth maps. Nonetheless, our approach is still able to estimate sharp depth maps, sometimes capturing
fine details which even an encoder-decoder trained with dense supervision fails to catch (bottom-row).

Dataset Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

PWC [14](*) 0.046 0.63 0.81 0.081 0.87 0.37 0.047 0.51 0.42
Ours (finetune PWC) 0.038 0.48 0.70 0.042 0.40 0.25 0.046 0.41 0.35
Ours (no finetune) 0.033 0.43 0.61 0.045 0.48 0.23 0.040 0.44 0.33

TABLE VIII
FINE-TUNING THE PARAMETERS OF PWCNET WITH A VERY SPARSE DEPTH LOSS PERFORMS WORSE THAN FIXING THEM. (*) INDICATES

THAT A SMALL CONVOLUTIONAL HEAD HAS BEEN ADDED TO THE PWCNET ARCHITECTURE.

architecture fails to learn smooth depths when trained with
sparse supervision.

Fig. 11 shows some of the filters produced by the local
network to convert optical flow into depth. Since converting
flow to depth depends on the relative transformation between
the two views, those filters are input-dependent. Generally,
filters are different for each image pair. However, when the
relative transformation between the input views is similar, filters
also tend to be similar (first and second row of Fig. 11). In
contrast, when the relative transformation between views is
completely different, filters tend to acquire a dissimilar pattern
(first and third row of Fig. 11).
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Image Pair and Local Network Filters

Fig. 11. Local network filters generated by several image pairs. Generally, filters are different for each image pair. However, when the
relative transformation between the two views is similar, filters also tend to be similar (first and second row). In contrast, when the relative
transformation is completely different, filters tend to have a dissimilar pattern (first and third row).
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