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Abstract— Motivated by the astonishing capabilities of natu-
ral intelligent agents and inspired by theories from psychology,
this paper explores the idea that perception gets coupled to 3D
properties of the world via interaction with the environment.
Existing works for depth estimation require either massive
amounts of annotated training data or some form of hard-coded
geometrical constraint. This paper explores a new approach to
learning depth perception requiring neither of those. Specifi-
cally, we train a specialized global-local network architecture
with what would be available to a robot interacting with the
environment: from extremely sparse depth measurements down
to even a single pixel per image. From a pair of consecutive
images, our proposed network outputs a latent representation
of the observer’s motion between the images and a dense depth
map. Experiments on several datasets show that, when ground
truth is available even for just one of the image pixels, the
proposed network can learn monocular dense depth estimation
up to 22.5% more accurately than state-of-the-art approaches.
We believe that this work, despite its scientific interest, lays the
foundations to learn depth from extremely sparse supervision,
which can be valuable to all robotic systems acting under severe
bandwidth or sensing constraints.

I. INTRODUCTION

Understanding the three-dimensional structure of the world
is crucial for the functioning of robotic systems: for instance,
it supports path planning and navigation, as well as motion
planning and object manipulation. Animals, including humans,
obtain such three-dimensional understanding naturally, with-
out any specialized training. By observing the environment
and interacting with it [1], they learn to estimate (possibly
non-metric) distances to objects using stereopsis and a
variety of monocular cues [2], [3], including motion parallax,
perspective, defocus, familiar object sizes. Could a robotic
system acquire a metric understanding of its surrounding
from a similar feedback?

Endowing robots with such an ability would be valuable for
several applications. Consider for example a swarm of nano
aerial vehicles, whose task is to explore a previously unseen
environment [4], [5]. Constrained by the size and battery life,
each robot can only carry limited sensing, e.g. a camera or a
1D distance sensor. Learning to estimate dense metric depth
maps from such on-board sensors during operation would
allow efficient exploration and obstacle avoidance [6].

Classically, multi-view geometry methods are used to recon-
struct the 3D coordinates of points given their corresponding
projections in multiple images. These geometric approaches,
carefully engineered over decades, demonstrate impressive
results in a variety of settings and applications [8]. One
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Fig. 1. We train a depth perception system with what would be
avaialbe to a robot interacting with the environment: very sparse
depth measurements. When trained in such sparse regimes (up to a
single pixel per image), our approach learns to perceive depth with
higher accuracy than state-of-the-art methods.

downside of this class of approaches is that they are using
only some of the depth cues (mainly stereo and motion
parallax), but typically do not exploit more subtle monocular
cues, such as perspective, defocus or known object size.
Unsupervised learning approaches to depth estimation [9],
[10], [7] combine geometry with deep learning, with the hope
that deep networks can learn to utilize the cues not used by
the classic methods. In these approaches, depth estimators
are trained from monocular or stereo video streams, using
photometric consistency between different images as a loss
function. Unsupervised learning approaches are remarkably
successful in many cases, but they are fundamentally based on
hard-coded geometry equations, which makes them potentially
sensitive to the camera model and parameters, as well as
difficult to tune.

A. Contributions

The present work is motivated by the following question:
how can three-dimensional perception be learned by a robot
interacting with an environment? To make the problem
tractable, we make two assumptions. First, motivated by
the extensive evidence from psychology and neuroscience on
the fundamental importance of motion perception [11], [12],
[13], [14], we provide pre-computed optical flow as an input
to the depth estimation system. Optical flow estimation can
be learned either from synthetic data [15], [16], [17] or from
real data in an unsupervised fashion [18], [19]. Second, we
assume at training time the availability of only very sparse



depth ground truth (just few pixels per image), similar to
what a robot might collect with a 1-D distance sensor while
navigating an environment.

In order to learn a generalizable depth estimator from
such assumptions, we design a specialized global-local deep
architecture consisting of two modules – global and local –
tasked with estimating the observer’s motion and the dense
per-pixel depth, respectively. The global module takes as
input two images and optical flow between them and outputs
a compact latent vector of “global parameters”, which we
expect to encode the observer’s motion between the frames.
The local module then generates a compact fully convolutional
network, conditioned on the “global parameters”, and applies
it to the optical flow field to generate the final depth estimate.
The global and the local modules are trained jointly end-to-
end with the available sparse depth labels and without camera
pose ground truth.

Since the method is inspired by learning via interaction,
we evaluate it on several indoor scenarios. We compare
against both generic deep architectures and classic geometry-
based methods. Standard convolutional networks show good
results when trained with dense depth ground truth, but
their performance degrades dramatically in the very sparse
data regime. Classic methods are generally strong, but their
performance in the challenging monocular two-frame indoor
scenario suffers from suboptimal correspondence estimation
due to homogeneous surfaces and occlusions. The proposed
approach outperforms baselines of both types, thanks to its
ability to effectively train with very sparse depth labels and
its robustness to imperfections in optical flow estimates.

II. RELATED WORK

The problem of recovering the three-dimensional structure
of a scene from its two-dimensional projections has been
long studied in computer vision [20], [21], [22], [23]. Classic
methods are based on multi-view projective geometry [24].
The standard approach is to first find correspondences
between images and then use these together with geometric
constraints to estimate the camera motion between the images
(for instance, with the eight-point algorithm [22]) and the
3D coordinates of the points (e.g., via triangulation [21]).
Numerous advanced variations of this basic pipeline have
been proposed [25], [26], [27], [28], improving or modifying
various its elements. However, key characteristics of these
classic methods are that they crucially rely on projective
geometry, require laborious hand-engineering, and are not
able to exploit non-motion-related depth cues.

To make optimal use of all depth cues, machine learning
methods can either be integrated into the classic pipeline, or
replace it altogether. The challenge for supervised learning
methods is the collection of training data: obtaining ground
truth camera poses and geometry for large realistic scenes
can be extremely challenging. An alternative is to train on
simulated data, but then generalization to diverse real-world
scenes can become an issue. Therefore, while supervised
learning methods have demonstrated impressive results [29],

[30], [31], [32], it is desirable to develop algorithms that
function in the absence of large annotated datasets.

Unsupervised (or self-supervised) learning provides an
attractive alternative to the label-hungry supervised learning.
The dominant approach is inspired by classic 3D reconstruc-
tion techniques and makes use of projective geometry and
photometric consistency across frames. Existing works use
various depth representations for this task: voxel grids [33],
[34], point clouds [35], [36], triangular meshes [37] or depth
maps [9], [10], [38], [39]. In this work we focus on the
depth map representation. Among the methods for learning
depth maps, some operate in the stereo setup (given a dataset
of images recorded by a stereo pair of cameras) [9], [38],
while others address the more challenging monocular setup,
where the training data consists of monocular videos with
arbitrary camera motions between the frames [10], [39].
Reprojection-based approaches can often yield good results,
but they crucially rely on geometric equations and precisely
known camera parameters (one notable exception being the
recent technical report in [40], which learns the camera
parameters automatically). In contrast, we do not require
knowing the camera parameters in advance and do not rely
on projective geometry. Also related to our work are depth
completion methods [41], which learn to predict full depth
maps given sparse ground-truth annotations. However, while
they assume to observe ground-truth also at test time, we
use ground-truth annotations only at training time. At test
time, we predict depth maps from two images only. Using
sparse annotations only for training has been applied mainly
to semantic segmentation [42], where additional cues, e.g.,
object masks, can facilitate learning.

Several works, similar to ours, aim to learn 3D represen-
tations without explicitly applying geometric equations [43],
[44], [45]. A scene, represented by one or several images, is
encoded by a deep network into a latent vector, from which,
given a target camera pose, a decoder network can generate
new views of the scene. A downside of this technique is
that the 3D representation is implicit and therefore cannot
be directly used for downstream tasks such as navigation
or motion planning. Moreover, at training time it requires
knowing camera pose associated with each image. Our
method, in contrast, does not require camera poses, and
grounds its predictions in the physical world via very sparse
depth supervision. This allows us to learn an explicit 3D
representation in the form of depth maps.

A. Model architecture

III. METHODOLOGY

Given two monocular RGB images I1, I2, with unknown
camera parameters and relative pose, as well as the optical
flow w between them, we aim to estimate a dense depth
map corresponding to the first image. We assume to have an
artificial agent equipped with a range sensor, which navigates
through an indoor environment. By doing so, it collects a
training dataset of image pairs, with depth ground truth d
available only for extremely few pixels. Using this sparsely
annotated dataset, we train a deep network F�(I1; I2;w), with
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Fig. 2. Global-local model architecture. An image pair and an estimated flow field are first fed through the global module that estimates the
“global parameters” vector g, representing the camera motion. From these global parameters, the local module generates three convolutional
filter banks and applies them to the optical flow field. The output of the local module is then processed by a convolution to generate the
final depth estimate.

parameters θ, that predicts a dense depth map d̂ over the
whole image plane. We now describe the network architecture
in detail.

An overview of the global-local network architecture is
provided in Figure 2. The system operates on an image pair
I1, I2 and the optical flow (dense point correspondences) w
between them. In this work, we estimate the flow field with
an off-the-shelf optical flow estimation algorithm, which is
neither trained nor tuned on our data.

The rest of the model is composed of two modules:
a global module G that processes the whole image and
outputs a compact vector of “global parameters” and a local
module L that applies a compact fully convolutional network,
conditioned on the global parameters, to the optical flow field.
This design is motivated both by classic 3D reconstruction
methods and by machine learning considerations. Establish-
ing an analogy with classic pipelines, the global module
corresponds to the relative camera pose estimation, while
the local module corresponds to triangulation – estimation
of depth given the image correspondences and the camera
motion. These connections are described in more detail in
the supplement. From the learning point of view, we aim to
train a generalizable network with few labels, and therefore
need to avoid overfitting. The local module is very compact
and operates on a transferable representation – optical flow.
The global network is bigger and takes raw images as input,
but it communicates with the rest of the model only via
the low-dimensional bottleneck of global parameters, which
prevents potential overfitting.

The “global module” G is implemented by a convolutional
encoder with global average pooling at the end. The network
outputs a low-dimensional vector of “global parameters” g =
G(I1; I2;w). The idea is that the vector represents the motion
of the observer, although no explicit supervision is provided
to enforce this behavior. While the optical flow alone is in
principle sufficient for ego-motion estimation, we also feed
the raw image pair to the network to supply it with additional
cues.

The “local module” L takes as input the generated global
parameters g, as well as the optical flow field. First, the
global parameter vector is processed by a linear perceptron
that outputs several convolutional filters banks, collectively
denoted by ϕ = LP (g). Then, these filter banks are stacked
into a small fully convolutional network C’ that is applied to
the optical flow field. We append two channels of x- and y-
image coordinates to the input w of C’, as in CoordConv [46].
The output of C’ is the final depth prediction d̂ = C’(w).

This design of the local module is motivated by classic
geometric methods: for estimating the depth of a point it is
sufficient to know its displacement between the two images,
its image plane coordinates, and the camera motion. In
contrast to this standard formulation of triangulation, we
intentionally make the receptive field of the network larger
than 1� 1 pixel, so that the network has the opportunity to
correct for small inaccuracies or outliers in the optical flow
input.

A. Loss function

Similarly to previous work [31], [30], we define the loss on
the inverse depth ẑ :

= d̂
�1

. This is a common representation
in computer vision and robotics [47], [26], which allows to
naturally handle points and their uncertainty over a large
range of depths. We use the L1 loss on the inverse depth,
averaged over the subset P of the pixels that have associated
ground truth inverse depth z:

Ldepth =
1

jP j
X
i2P

jẑi � zij: (1)

To encourage the local smoothness of the predicted depth
maps, we add an L1 regularization penalty on the gradient
rẑ = (@xẑ; @y ẑ) of the estimated inverse depth. Similarly to
classic structure from motion methods and unsupervised depth
learning literature [38], we modulate this penalty according
to the image gradients @I1, allowing depth discontinuities to
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TABLE I

METRICS FOR QUANTITATIVE EVALUATION OF DEPTH ACCURACY. d IS THE GROUND TRUTH DEPTH, d̂ IS THE PREDICTION. FOR

CONVENIENCE WE DENOTEE log
:= log( d=d̂) = log d � log d̂. FOR ALL METRICS, LOWER IS BETTER.
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Fig. 3. Qualitative comparison of the depth maps generated with the baselines and our approach. Overall, Struc2Depth's predictions are
generally poor in homogeneous and repetitive regions, while DispNet tends to over-smooth depth maps. In contrast, our method can predict
�ne details of the scene geometry.

be larger at points with large@I 1:
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1
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with 
 representing the full image plane. The full training
loss of our network is a weighted sum of these two terms
L total = � pL depth+ � sL smooth.

B. Model details

In all our experiments the input images have resolution
256� 192 pixels. Unless mentioned otherwise, ground truth
depth is provided for a single pixel of each image, but we
also experiment with denser ground-truth signals. We use a
pre-trained PWC-Net [17] for optical �ow estimation.

We use the Leaky ReLU non-linearity in all networks.
The global module is implemented by a 5-layer convolutional
encoder with the number of channels growing from16 to 256,
with stride2 in the �rst 4 layers. The last256-channel hidden
layer is followed by a convolution with6 channels and global
average pooling, resulting in the6-dimensional predicted
global parameter vectorg. The local module consists of a
single linear perceptron which transformsg linearly to a
3:9K vector. Empirically, we did not �nd an advantage in
utilizing a multi-layer non-linear perceptron in place of the
linear operation. The resulting vector is split into three parts,
which are reshaped into �lter banks with kernel size3 � 3
and number of output channels 20, 10, 20, respectively. These
�lter banks, with Leaky ReLUs in between, constitute the
compact fully-convolutional depth estimation networkC' .

The 20-channel network output is then processed by a single
3 � 3 convolutional layer to shrink the channels to 1. The
design of this compact fully convolutional network has been
inspired by the re�nement layer used by previous works on
supervised depth estimation [31], [30].

We train the model with the Adam optimizer [48] with
an initial learning rate of10� 4 for a total of approximately
94K iterations with a mini-batch size of16. We apply data
augmentation during training. Further details are provided in
the supplement.

IV. EXPERIMENTS

Navigating a physical agent in the real world to collect
interaction data is challenging due to problem spanning
perception, planning, and control. Therefore, in order to
isolate the contribution of our proposed method, we simulate
distance observations from a navigation agent,e.g. nano-
drones [5], by masking out all depth ground truth except
for a single one on several depth estimation benchmarks.
Speci�cally, we test the approach on three datasets collected
in cluttered indoor environments, either real or simulated:
Scenes11, Sun3D, and RGB-D. Scenes11 [31] is a large
synthetic dataset with randomly generated scenes composed
of objects from ShapeNet [51] against diverse backgrounds
composed of simple geometric shapes. SUN3D [52] is a
large collection of RGB-D indoor videos collected with a
Kinect sensor. RGB-D SLAM [53] is another RGB-D dataset
collected with Kinect in indoor spaces.

For all datasets, we use the splits proposed by [31]. As
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