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Event-based, Direct Camera Tracking from a

Photometric 3D Map using Nonlinear Optimization
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Abstract— Event cameras are novel bio-inspired vision sen-
sors that output pixel-level intensity changes, called “events”,
instead of traditional video images. These asynchronous sensors
naturally respond to motion in the scene with very low latency
(in the order of microseconds) and have a very high dynamic
range. These features, along with a very low power consump-
tion, make event cameras an ideal sensor for fast robot local-
ization and wearable applications, such as AR/VR and gaming.
Considering these applications, we present a method to track
the 6-DOF pose of an event camera in a known environment,
which we contemplate to be described by a photometric 3D map
(i.e., intensity plus depth information) built via classic dense 3D
reconstruction algorithms. Our approach uses the raw events,
directly, without intermediate features, within a maximum-
likelihood framework to estimate the camera motion that best
explains the events via a generative model. We successfully
evaluate the method using both simulated and real data, and
show improved results over the state of the art. We release the
datasets to the public to foster reproducibility and research in
this topic.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/ISgXVgCR-lE

Code, Datasets: http://rpg.ifi.uzh.ch/direct event camera tracking

I. INTRODUCTION

In contrast to standard cameras, which output intensity

images at a constant rate, event cameras, such as the Dy-

namic Vision Sensor (DVS) [1], have independent pixels

that output only intensity changes (called “events”) at the

time they occur, with microsecond resolution. Hence, the

output of an event camera is a stream of asynchronous

events. This bio-inspired way of sensing visual information

offers several advantages: high temporal resolution and low

latency (in the order of microseconds), a very high dynamic

range (140dB vs. 60dB of standard cameras), lack of motion

blur (since pixels are independent of each other), and low

power and bandwidth requirements. Hence, event cameras

have a large potential for robotics and wearable applications

in challenging scenarios for standard cameras, such as high

speed and high dynamic range. Recent plans for mass

production claimed by companies, such as Samsung [2] and

Prophesee, highlight that there is a big commercial interest

in exploiting these new vision sensors for mobile robotic as

well as augmented and virtual reality (AR/VR) applications.
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Switzerland, http://rpg.ifi.uzh.ch. This work was supported by the Swiss
National Center of Competence Research Robotics, through the Swiss Na-
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Fig. 1. Considered scenario: the pose of the event camera is computed
with respect to a photometric 3D map of the environment, represented as
a dense, colored point cloud or mesh. The event camera is represented as
a green frustum whose vertex is at its optical center. The image plane of
the event camera (at the base of the frustum) displays the events, colored
according to polarity (red and blue). Events are caused by the apparent
motion of edges on the image plane.

Motivated by these recent developments, in this work, we

tackle the problem of tracking the six degree-of-freedom

(6-DOF) pose of an event camera in a known environment,

as illustrated in Fig. 1. This is the typical scenario of robots

traversing previously-mapped spaces, and AR/VR applica-

tions (users wear head mounted displays and move freely

in the previously-mapped environment). Event cameras offer

great potential in this scenario, since they excel at sensing

motion, and they do so with very low latency and consuming

very little power. We envision that the mobile robot or user

(AR/VR) would first use a standard sensor to build a high

resolution and high quality map of the environment, and then

would take advantage of an event camera to achieve robust-

ness to high-speed motion and low-power consumption.

Because the output of event cameras is fundamentally

different from that of standard cameras, traditional vision

algorithms cannot be applied, and so, new methods are

required. Previous work [3] presented a filter-based approach

that requires to maintain a history of past camera poses which

are continuously being refined. This led to an unnecessarily

complex scheme to update many unknowns: the full history

of camera poses. In contrast, we focus on designing a simple

yet principled scheme for camera tracking. To this end,

we develop a maximum likelihood approach to explain the

observed events based on a generative model of them given

the map of the environment. This results in a nonlinear opti-

mization approach, as opposed to filtering [3], that allows to

achieve accurate camera tracking without having to maintain

a history of past poses.
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Our method works by comparing the events acquired

by the camera to predictions of them, as they would be

generated according to the map of the scene and candidate

values for the camera pose and its velocity. The comparison

error, defined by means of an objective function over the

entire image plane, drives the estimation of the unknowns of

the problem: the pose of the event camera. Our framework

allows to take advantage of the asynchronous, high dynamic

range, and low-latency nature of the events to produce low-

latency camera poses with high temporal resolution.

In summary, our contributions are the following:

• A novel method for 6-DOF camera tracking with an

event camera given a photometric 3D map of the scene.

We (i) leverage a generative model to explain how

events are related to intensity patterns in the map, fully

exploiting the strength of the intensity gradients causing

the events, and (ii) simultaneously estimate the camera

pose as well as its linear and angular velocities.

• We thoroughly evaluate the proposed pose tracker on

a diversity of scenes and provide a comparison with a

state-of-the-art method [3], showing that our approach

provides more accurate camera poses.

• We release the datasets used in the experiments, includ-

ing the acquired images, ground truth camera trajecto-

ries, as well as the built photometric maps of the scenes,

to foster reproducibility and research in this topic.

Outline: The rest of the paper is organized as follows:

Section II reviews the related work on event-based pose

tracking, Section III presents our approach, consisting of a

maximum likelihood formulation of the observed events in

terms of the camera pose, its velocity and the photometric 3D

map of the scene. Experiments are carried out and discussed

in Section IV to assess the performance of our method, and

finally, conclusions are drawn in Section V.

II. RELATED WORK

Since the invention and commercialization of the Dynamic

Vision Sensor (DVS) in 2008 [1], the problem of ego-motion

estimation with event cameras has been addressed by mul-

tiple researchers. Event-based SLAM has been investigated

in [4]–[6], and extended to 6-DOF motions in [7]–[13]. These

systems, however, target a different scenario than the one we

address, namely, they focus on simultaneous map building

and localization, which serves to constantly explore new

regions of the environment.

In this work, we focus on localization with respect to

a given map. This has important applications in robotic

navigation (robot moving in a known environment, such as a

warehouse) and augmented or virtual reality. Hence, the map

of the environment needs to be built only occasionally (e.g.,

if new objects appear in the scene). Our work is most related

to [3], where the authors propose a probabilistic filtering

approach to track the 6-DOF pose of the event camera in

natural scenes. They use a photometric map of the scene

consisting of a sparse set of keyframes (poses, intensity

images and depth maps), and consider a robust likelihood

function for the generation of the events in terms of the

intensity images.

From a high-level point of view, both [3] and this work

target the same scenario, and therefore, share the same

inputs (events, photometric map) and outputs (camera poses).

The differences between them lie in the solution procedure,

where [3] adopts a filtering approach, whereas we propose a

nonlinear least-squares optimization approach.

Specifically, the method in [3] operates on an event-by-

event basis, updating the filter state on every incoming event,

thus virtually eliminating latency. This requires to keep a his-

tory of past camera poses, which are refined (included in the

filter state) as newer events are processed. Past camera poses

are utilized to compute the predicted intensity change (i.e.,

“contrast”) of the event, according to a per-event generation

model. However, having to update or interpolate poses on

a per-event basis has a non-negligible computational cost,

regardless of the cost of later processing stages. In contrast,

our approach trades off some latency for a simpler event

generation model that does not require any reference to past

poses. This is sensible because localization does not need to

have the granularity of an event (1 microsecond); it can have

the granularity of a few events (within 1 millisecond or less).

Hence, we process events in small groups (or “windows”) to

produce a pose. This grouping is not a drawback since we

could still produce a pose for every incoming event by sliding

the window by a single event. We define the likelihood of

a group of events given a pose and seek its maximization,

leading to an equivalent, nonlinear least squares problem.

Additionally, in contrast to previous approaches, we jointly

estimate the camera pose as well as its velocity (linear and

angular).

III. METHODOLOGY

Our method is inspired by [14], where the principled

idea of predicting intensity changes and comparing them to

those given by actual events was used for feature tracking.

Here, instead, we adapt the framework and apply it to

the estimation of quantities in 3D space: the 6-DOF pose

of the event camera and its velocity. In a nutshell, we

cast the pose estimation problem as that of registering two

intensity-change images that are related by a complex, depth-

dependent geometric transformation. In the following, we

present the two images being registered and the objective

function used to compare them. Our method is summarized

in Fig. 2, which illustrates how to compute intensity-change

images using the room scene of Fig. 8.

A. Event-Camera Working Principle

Each pixel of an event camera produces an event ek =
(uk, tk, pk) whenever it detects that the logarithmic lumi-

nance L at that pixel, uk = (xk, yk)
⊤, changes by a specified

amount C (called contrast sensitivity) [1]:

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk −∆tk) = pk C, (1)

where the polarity pk = {+1,−1} is the sign of the

brightness change, and ∆tk is the time elapsed since the last
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Fig. 2. Block diagram of the proposed objective function, which includes
the generative event model. The left branch illustrates how the observed
intensity-change image is computed from the events (2). The right branch
shows how the predicted intensity-change image (8) is computed from

the photometric map and the camera motion (pose T and velocity Ṫ ).
The difference between both intensity-change images is used to define a
likelihood function (or, equivalently, an objective function) to be optimized
with respect to the event camera motion parameters.

event at the same pixel. The event ek is a tuple consisting

of the space-time coordinates (on the image plane) of the

intensity change and its polarity. Event timestamps tk have

microsecond resolution.

B. Intensity-Change Image obtained from the Events

As anticipated in Section II, we process events in groups

E .
= {ek}Ne

k=1, spanning a small time interval ∆t = tNe
− t1.

We pixel-wise collect the event polarities over ∆t on the

whole image plane, producing an image ∆L(u) with the

amount of intensity change that occurred during the interval:

∆L(u) =
∑

tk∈∆t

pkC δ(u− uk), (2)

where the Kronecker delta δ selects the pixel lattice. This is

illustrated on the left branch of the block diagram in Fig. 2.

Pixels of L(u) that do not change intensity are represented

in gray in ∆L, whereas pixels that increased or decreased

intensity are represented in bright and dark, respectively.

C. Intensity-Change Image from the Map and Sensor Pose

The photometric 3D map of the environment is used to

produce a prediction of the events that would be generated

if the camera moved with some velocity. First, let us define,

based on (1), a linearized event generation model, and

then let us show how its elements can be computed using

the information available: photometric map and candidate

camera pose and velocity.

a) Linearized Event Generation Model: For small ∆t,
such as in the above-mentioned example of Fig. 2, the

intensity increments (2) are due to moving edges, as we show

next. Substituting the brightness constancy assumption (i.e.,

optical flow constraint)

∂L

∂t

(

u(t), t
)

+∇L
(

u(t), t
)

· u̇(t) = 0, (3)

with image-point velocity v ≡ u̇, in Taylor’s approximation

∆L(u, t)
.
= L(u, t)− L

(

u, t−∆t
)

≈ ∂L

∂t
(u, t)∆t, (4)

gives (see [15])

∆L(u) ≈ −∇L(u) · v(u)∆t, (5)

that is, increments (2) are caused by intensity gradients

∇L
.
= (∂L

∂x
, ∂L
∂y

)⊤ moving with velocity v(u) over a dis-

placement ∆u
.
= v∆t. As the dot product in (5) conveys, if

the motion is parallel to the edge (v ⊥ ∇L), the increment

vanishes, and, therefore, no events are generated. From now

on, let us denote the modeled intensity change (5) using a

hat, ∆L̂. This is illustrated on the right branch of the diagram

in Fig. 2.

b) Image ∆L̂ in terms of the Map and the Camera

Pose: The elements on the right-hand side of (5), namely the

intensity gradient ∇L and the image-point velocity v (i.e.,

the motion field, also called “optic flow” in spite of their

different nature) can be computed from the photometric map

of the scene and the unknowns of the problem.

The image gradient ∇L (5) is obtained by differentiating

the intensity image produced by projecting the photometric

map M onto a candidate viewpoint, specified by pose T
(see Fig. 2). The motion field v in (5) is purely geometric,

given in terms of the candidate camera pose T , its linear

and angular velocities Ṫ
.
= (V⊤,ω⊤)⊤, and the depth of

the scene Z ≡ Z(u) with respect to the camera, according

to [15], [16]:

v(u) = J(u) Ṫ , (6)

with the 2× 6 feature sensitivity matrix

J(u) =

[

−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

]

.

(7)



Substituting (6) in (5) gives the intensity change caused by

the camera motion in 3D space,

∆L̂(u) ≈ −∇L(u) · J(u)Ṫ∆t. (8)

Observe that the pose T and its velocity Ṫ are global

quantities shared by all pixels u of the image plane; these are

the unknowns of the problem. The rest, i.e., the intensity I
and depth Z(u) (given by the photometric map M) and the

time span ∆t (given by the event timestamps) are all known.

The depth Z(u) and the intensity gradient ∇L depend on the

projection of the map from the candidate pose T , although

this is omitted in the notation for readability.

D. Maximum Likelihood Optimization Framework

As anticipated at the beginning of the section and illus-

trated at the bottom of Fig. 2 (where both branches meet),

we propose to use the difference between two images: the

observed intensity changes ∆L from the events (2) and the

predicted ones ∆L̂ from the photometric map (8), to estimate

the camera motion (pose and velocity).

More specifically, assuming that the difference ∆L−∆L̂
follows a zero-mean additive Gaussian distribution with

variance σ2, the likelihood of a group of events E being

generated by a camera moving with respect to a given map

M is

p(E|T , Ṫ ;M)
.
=

1√
2πσ2

∫

Ω

e−
1

2σ2 (∆L(u)−∆L̂(u;T ,Ṫ ))
2

du.

(9)

Our goal is to find the camera pose T and velocity Ṫ that

maximize the event likelihood (9), i.e., that best explain the

events with the proposed generative model.

Maximizing (9) with respect to the motion parameters T
and Ṫ (since M, i.e., ∇L, is known) is equivalent to the

minimization of the L2 norm of the intensity-change residual,

min
T ,Ṫ

‖∆L(u)−∆L̂(u;T , Ṫ )‖2L2(Ω), (10)

where ‖f(u)‖2
L2(Ω)

.
=

∫

Ω
f2(u)du. However, (10) depends

on the contrast sensitivity C (via (2)), which is unknown in

practice. Inspired by [17], we instead propose to minimize

the difference between normalized (unit-norm) images:

min
T ,Ṫ

∥

∥

∥

∥

∥

∆L(u)

‖∆L(u)‖L2(Ω)
− ∆L̂(u;T , Ṫ )

‖∆L̂(u;T , Ṫ )‖L2(Ω)

∥

∥

∥

∥

∥

2

L2(Ω)

, (11)

which cancels the terms in C and ∆t, and only depends on

the direction of the velocity vector Ṫ . The image registration

implied by the objective function (11) was implemented, as

is standard, using a multiresolution approach (i.e., image-

pyramid) and was minimized using the nonlinear least

squares solver in the Ceres library [18]. To gain resilience to

outliers, we replaced the simple L2 norm by robust kernels

(Huber norm).

Fig. 3 shows an example of a 2D slice of the objective

function (11) for an experiment with real data, color coded

from blue (small error) to red (large error). By parametrizing

the camera’s pose using local exponential coordinates (i.e.

+/- 50cm +/- 5cm +/- 0.5cm

Fig. 3. Objective function (11) (pseudo-colored from blue (low) to red
(high)) for variations in the x and y translational components of the pose
T of the event camera, shown for ±50cm, ±5cm and ±5mm.

with respect to an offset rotation [19], [20]) and using the

straightforward representations for position and velocity, we

obtain a twelve-dimensional parameter space (of which we

plot 2D slices). As it is observed, the landscape of the

objective function is complex, but it has a clear minimum,

reachable provided the solver is initialized in its basin of

attraction. As in [3], we assume the initial camera pose is

given, and initialize the camera velocity randomly, with about

1m/s magnitude. Upon convergence, the pose and velocities

are used to initialize the parameters of the optimization

corresponding to the next group of events, i.e., next intensity-

change image.

E. Discussion of the Approach

As mentioned in Section II, our approach does not need

to manage a history of past camera poses. This is prevented

by the linearization in the event generation model (4) (and

(5)). However, for this to be valid, we require to compute

the intensity change due to several events, as opposed to the

per-event generation model of previous approaches.

An interesting characteristic of our approach is that it is

based on the generative event model (8), which not only takes

into account that events are triggered at the intensity edges of

the projected map, ∇L, but also that the triggering condition

depends on the appearance of such edges with respect to

the direction of the camera velocity (the appearance of ∆L̂
significantly varies with Ṫ ). Our method not only estimates

the event camera pose, but also its velocity, and consequently,

the optic flow. This dependency was not explicitly modeled

in previous works, such as filtering approaches [3], [4], [12].

The number of events Ne used to build an intensity-change

images (2) plays an important role in the objective function.

A small Ne does not yield sufficient signal-to-noise ratio

or evidence of existing edge motion to produce good pose

estimates. A large Ne increases latency, produces motion blur

in the intensity-change images and breaks the assumption

about events being triggered by the camera at a “single”

location T (the poses for the first and last event become

further apart), which is also harmful for estimation. Hence,

there is a trade-off in the selection of Ne, as illustrated in

Fig. 4. (a reference value is 0.10 events/pixel). As shown

in [14] for feature tracking, it is possible to dynamically set

Ne based on the amount of texture present in the scene. In

the experiments, we use Ne/Np = 0.20 events/pixel, which

gives about Ne ≈ 10 000 events per intensity-change image.



0.01 events/pixel 0.10 events/pixel 0.50 events/pixel

Fig. 4. Effect of varying the integration time ∆t, or, equivalently, the
number of accumulated events Ne. Columns are sorted according to the
increasing value of Ne/Np, where Np is the number of pixels of the image.
Top row: intensity image I(u) with overlaid events (in red and blue, colored
according to polarity). Middle row: intensity-change images ∆L(u) in (2),
obtained by pixel-wise accumulation of event polarities. Bottom row: 2D
slice of the 12-D objective function across the X and Y translation axes
(±3 cm). A yellow plus (+) indicates the ground truth pose at the center
of the event integration window ∆t; red crosses (×) indicate the ground
truth poses at the beginning and end of the integration window.

IV. EXPERIMENTS

To assess the accuracy of our method, we first evaluate

it on synthetic data, where we are able to control scene

parameters (depth, illumination, etc.) and we have perfect

knowledge of the event camera trajectory. Then, we test our

method on real data acquired in an indoor scene. There,

the ground truth camera trajectory is provided by a motion-

capture system with sub-millimeter accuracy. We release

our datasets to the public at http://rpg.ifi.uzh.ch/direct event

camera tracking.

A. Evaluation Metrics

The pose estimation error is measured in both position

and orientation. The position error is given by the Euclidean

distance between the ground truth and the estimated event

camera trajectories (position of the optical center). We also

report the relative position error with respect to the mean

scene depth, as in [3]. The orientation error is measured

using the geodesic distance in the rotation group SO(3) [21],

which is the angle of the residual rotation between the

estimated pose and the ground truth. Since the velocity of

the camera Ṫ can only be estimated up to a non-zero scale

factor, to compare two velocity vectors Ṫ we use the angle

between them, using the dot product.

B. Synthetic Data. Assessing Tracking Accuracy

Using simulated data, we validate our method and assess

its tracking accuracy. We used the event camera simula-

tor [22], [23] on several scenes with different types of

(a) (b)

Fig. 5. Two of the synthetic scenes: (a) toy room depicts some textured
boxes on a carpet; (b) atrium consists of a virtual model of the Atrium
Sponza Palace in Dubrovnik.

TABLE I

MEDIAN ACCURACY OF TRACKING OF ALL EXPERIMENTS.

Pose Velocity Direction [◦]

Scene Ave. Depth [m] Pos. [cm] Orient. [◦] Linear Angular

carpet 2.11 0.73 0.16 23.56 17.76
carpet (D) 2.11 1.12 0.21 20.24 16.17
toy room 1.99 0.45 0.20 17.54 62.69
toy room (D) 1.99 0.89 0.28 17.53 61.17
atrium 10.60 6.53 0.43 9.58 5.47
atrium (D) 10.60 6.90 0.52 11.17 6.04

room Traj. 1 3.20 9.95 3.08 n/a n/a
room Traj. 2 3.41 8.82 3.84 n/a n/a
room (D) 3.41 9.27 3.63 n/a n/a

(D): downsampled intensity-change images.

textures and objects: carpet, toy room and atrium. The

carpet scene consists of a flat, textured surface. It is an

interesting scenario since pose estimation can be ambiguous

for planar scenes (rotational and translational motions have

similar motion fields), which is more severe if the field-

of-view (FOV) of the camera is limited. The toy room

scene consists of a couple of boxes with natural textures

(e.g., plant leaves) on the same flat surface as carpet

(see Fig. 5a). The non-flatness of the scene prevents the

appearance of pose ambiguities. Finally, the atrium scene

is a famous computer graphics virtual model of the Atrium

Sponza Palace in Dubrovnik. It presents rock-like textures,

with strong intensity edges mostly due to boundary of objects

(columns, windows, doors, etc.), as shown in Fig. 5b.

In the synthetic scenes, we generated smooth camera

trajectories by fitting splines to randomly generated poses.

Events were triggered as the camera moved using the simu-

lator [23], with a 240×180 pixel resolution, thus simulating

the event camera within the DAVIS240C device [24]. Then,

we run our pose tracking algorithm, feeding as photometric

3D map the virtual model of the scene (i.e., a colored mesh

comprising the surface of all objects in the scene). The

resulting pose tracking errors of our method are summarized

in the top half of Table I.

As can be observed in Table I, errors across all sim-

ulated scenes are remarkably small: less than 0.65% in

relative position error (with respect to the mean depth of the

scene) and less than 0.52◦ in orientation error. Moreover,

tracking in the planar scene (carpet) does not produce

motion ambiguities, e.g., x-translation is properly estimated,

disambiguated from a y-rotation, in spite of the limited FOV

http://rpg.ifi.uzh.ch/direct_event_camera_tracking
http://rpg.ifi.uzh.ch/direct_event_camera_tracking
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Fig. 6. Pose tracking results over time for a smooth random motion over a
planar texture (carpet scene). Tracking does not suffer from ambiguities.
The median position error is 0.73 cm, which corresponds to a relative error
of 0.34% with respect to the mean scene depth. The median orientation
error is 0.16◦ (see Table I).
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Fig. 7. Pose tracking results for a simulated flight trough the atrium
scene in Fig. 5b. The median position error is 6.53 cm, which amounts to
a relative error of 0.62% with respect to the mean scene depth (10.60m).
The median orientation error is 0.43◦.

of the camera (60◦ horizontally and 50◦ vertically). Fig. 6

displays the translation of the camera in this planar scene.

As it is observed, the estimated trajectory (solid lines) and

ground truth one (dashed lines) are almost indistinguishable

compared to the excursion of the motion.

The atrium experiments present the largest absolute

errors since the scene is considerably larger than the previous

two. However, in terms of relative error with respect to the

mean scene depth, errors are of the same order of magnitude

as those of the experiments in the carpet and toy room

scenes. Fig. 7 shows both the estimated trajectory of the

event camera moving through the scene (solid line) and the

ground truth trajectory (dashed line). The curves are almost

on top of each other since errors are small compared to the

amount of motion.

Supplementary Material: We encourage the reader to

watch the accompanying video, which shows the experiments

here presented in a better form than still images can convey.

Using Downsampled Intensity-Change Images: We also

tested the pose tracking algorithm using lower resolution

intensity-change images. As mentioned in Section III, the

method is implemented using a multiresolution approach.

In these experiments, we registered intensity-change images

∆L and ∆L̂ at the second highest-resolution level of the

image pyramid (e.g., 120 × 90 pixels for the DAVIS240C).

Such experiments are marked as “(D)” in Table I. This

modification had a minimal effect on accuracy loss (Table I)

while it significantly sped up computation time, as reported

in Table II.

(a) Photometric information (color)

(b) Geometric information (shape)

Fig. 8. room dataset. Photometric map used, generated with Elastic-
Fusion [25]. Some artifacts in texture-less areas are present due to auto-
exposure and white-balance of the consumer-grade RGB-D camera used.

C. Real Data

Experiments were also conducted on real scenes. The

event camera was moved hand-held in a room comprising

texture as well as large white walls (i.e., texture-less). For this

experiment, we used the DAVIS346 (346× 260 pixels) from

iniVation. Ground truth poses were provided by a motion-

capture system. The room was pre-mapped using a consumer

RGB-D camera (ASUS Xtion Pro) and running open-source

software ElasticFusion [25]. For improved accuracy of the

3D reconstructed map, we provided to ElasticFusion poses

from the motion capture system. The resulting color and

shape of the 3D-reconstructed photometric map are shown

in Figs. 8a and 8b, respectively. Auto-exposure and white-

balance were enabled during recording with the RGB-D

camera, leading to some unseemly intensity edges in the map

in what are actually uniform white walls (see Fig. 8a).

The results of our pose tracking method on a couple of

trajectories of the event camera under 6-DOF motion in this

room environment are reported in the bottom half of Table I.

In this scenario tracking is more challenging than in

previous scenarios for a number of reasons: (i) the presence

of uniformly white walls and a floor with high-frequency

texture, (ii) the presence of noise in both inputs: the events

and the photometric map, (iii) the presence of inaccuracies

in the calibration of the event camera and the hand-eye

calibration with respect to the motion-capture system. In

spite of these source of errors, our method is still able to track

gracefully, with relative position errors of 2.58% to 3.10%
and orientation errors of 3.08◦ to 3.84◦. A visualization of

the pose tracking results (events aligned with the reprojected



Fig. 9. Pose tracking visualization on one of the sequences of the room
dataset (Fig. 8). Events overlaid on the projected map from the viewpoint
of the estimated camera pose. Events are colored in red and blue, according
to polarity (positive in blue, negative in red). The alignment of the majority
of the events with respect to the intensity edges of the projected map is a
good indicator of the accuracy of the estimated camera pose.
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Fig. 10. Pose tracking results on the room scene (Traj. 1) using the
photometric map in Fig. 8. The median position error is 9.95 cm with
respect to a mean scene depth of 3.20m, that is, a 3.10% relative error.
The median orientation error is 3.08◦.

photometric map) is given in Fig. 9. The estimated and

ground truth trajectories of one of the sequences are dis-

played in Fig. 10. Compared to noise-free synthetic data, we

observe the decrease in tracking accuracy in the presence of

the above-mentioned noise sources.

D. Computational Load

We also report the computational effort required by our

non-optimized C++ implementation of the proposed ap-

proach. Timing results are presented in Table II for both

simulated and real data. The current implementation, built

on top of Ceres [18], is one to three orders of magnitudes

slower than real-time, depending on the settings. Making

the approach real-time capable is of course essential for

any practical application. As mentioned in Section IV-B,

using lower resolution intensity-change images is an option

to speed up the algorithm with a minor impact on accuracy

loss. To further reduce pixel count one could heuristically

filter pixels and only keep those that contribute significantly

to the error. On the implementation side there is room for

optimization using parallelization: the pixels are independent,

only the last step of solving (11) is inherently sequential. Our

method would thus be ideally suited for a more distributed

platform, such as a GPU (currently, all computation is done

on the CPU, except for the rendering of the map, where

TABLE II

COMPUTATION TIME REQUIRED FOR POSE TRACKING.

Processing Full Tracking Step

Scene Length [s] Events/sec Iter./step ms/iter. total [ms]

carpet 20 2857 24.66 120.06 3024.70
carpet (D) 20 12 789 17.01 38.52 675.70
toy room 20 3160 25.94 132.26 3418.50
toy room (D) 20 6433 27.59 59.59 1679.30
atrium 10 4130 12.23 166.07 2098.60
atrium (D) 10 11 532 17.34 41.01 751.60

room Traj. 1 8.32 995 64.63 359.54 22 704.00
room Traj. 2 43.24 1016 90.31 315.08 22 139.20

(D): downsampled intensity-change images.
The upper half are simulated environments.
These results were obtained on a single Intel i7-870 core.

TABLE III

COMPARISON OF ROOT-MEAN-SQUARE (RMS) POSE ERRORS

WITH RESPECT TO STATE-OF-THE-ART.

Gallego et al. [3] This work

Length Position Orientation Position Orientation
[s] [cm] [%] [◦] [cm] [%] [◦]

boxes 1 23.3 5.08 2.69 2.51 4.74 2.52 1.86
boxes 2 26.7 4.04 2.15 2.18 4.46 2.38 2.10

boxes 3 33.7 5.47 2.90 2.82 5.05 2.68 2.39
pipe 1 29.8 10.96 4.04 2.90 10.23 3.77 2.13
pipe 2 22.2 15.26 5.34 4.68 11.29 3.95 4.02
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Fig. 11. Comparison with [3, Fig. 13]. Error in position (relative to a mean
scene depth of 1.90m) and orientation (in degrees) of the camera poses
recovered by the method in [3] (in red) and by our method (in blue) for
the boxes sequences from [3] (ground truth is given by a motion-capture
system). We provide box plots of the root-mean-square (RMS) errors, the
mean errors and the standard deviation (Std) of the errors.

the GPU is mainly a convenience), which was used in other

works [12], [26], [27].

E. Comparison with State of the Art

We compared our method against the state-of-the-art [3].

To this end, we run our pose tracking algorithm on the same

datasets used in [3], and compared the resulting tracking

errors. These are reported in Table III. As it can be observed,

our method offers improved accuracy over [3], specially in

orientation estimation. Smallest errors per row, per error

type are highlighted in bold. Orientation error improves, on

average, by 15%, and position error, by 7%. Differences are

most notorious in the outdoor (pipe) sequences. Both errors



are related, as it is well known that errors in orientation

at some time t produce worse translation estimates at later

times, and vice-versa. Additional comparison on more boxes

sequences of [3] is provided in Fig. 11. Our method presents

more concentrated error statistics than [3].

F. Discussion

The previous experiments demonstrate that the proposed

method accurately tracks the pose of the event camera in

both simulated and real-world environments. In simulation,

position errors are smaller than 0.65%, and orientation errors

smaller than half a degree. These errors are very small

and validate our method with respect to noise-free event

data. The resulting pose tracking errors are imputable to

modeling errors (such as the linearization (4), the approx-

imation of intensity gradients using finite differences, as

well as non-explicitly modeled effects, e.g., occlusions and

disocclusions). While poses are estimated very accurately,

camera velocities are not as accurately estimated, which is

due to velocities being very sensitive to error sources, such as

modeling errors, as can be seen with perfect data (noise-free

events and map).

The above tracking errors increase to about 3% and 4◦,

respectively, in real-world sequences. The accuracy gap

between simulation and real world experiments is due to

additional error sources: (i) noise in the photometric map

reconstructed from a noisy RGB-D camera, (ii) noise and

non-idealities of event cameras [1], (iii) small delays among

the sensors, and (iv) inaccuracies in internal and external

calibration of all sensors involved to produce the “ground

truth” data used for evaluation. In spite of all these factors,

pose tracking still performs well in real-world conditions.

V. CONCLUSION

We have presented a method to track the 6-DOF pose of an

event camera with respect to a photometric 3D map, which is

a paramount scenario in robotics and AR/VR scenarios. Our

method leverages a principled event generation model within

a maximum-likelihood framework to jointly estimate the

camera poses and velocities, through nonlinear optimization,

fully exploiting the strength of the intensity gradients in the

scene. A thorough evaluation on both synthetic and real data

proves that our method provides compelling accuracy, and

it improves over the state-of-the-art filtering approach [3]

while being simpler to formulate. A key characteristic of

our method is that it uses the events, directly, without inter-

mediate hand-crafted features, thus exploiting as much of the

information contained in the events as possible. Additionally,

we release all our datasets with ground truth poses, in an

effort to foster reproducibility and research in this topic.
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