Event-based Feature Tracking and Visual Inertial Odometry

Kostas Daniilidis
with Alex Zhu and Nikolay Atanasov
University of Pennsylvania
Papers at ICRA 2017 and CVPR 2017

www.youtube.com/watch?v=m93XCqAS6Fc
www.youtube.com/watch?v=X3QIFj5Qc4A
Night Scene, Very Low Lighting
0.1x Real Time

Corresponding grayscale image, 50ms exposure
Truck Passing 3m from the Camera at 60 miles/hr, 0.06x Realtime

Optical flow is on the order of 5000 pixels/s.
Sequence is 600ms in realtime.
Frame-based Cameras
Event-based Cameras

Event-based cameras output asynchronous events \((x, y, t, p)\) at microsecond resolution when

\[
| \log(I(x, t_i)) - \log(I(x, t_{i-1})) | \geq \theta
\]
What is a feature in classic vision?

Features are defined through motion: good flow means good features!

But they defined with a spatial neighborhood!
Speed is dealt with multiple scales

14 Bayesian Multi-Scale Differential Optical Flow

Eero P. Simoncelli

Center for Neural Science, and Courant Institute of Mathematical Sciences
New York University
A feature is a set of 2D events induced by the same point in 3D.

\[
\begin{pmatrix} f(t) \\ 1 \end{pmatrix} \sim K \begin{bmatrix} R(t) & T(t) \end{bmatrix} \begin{pmatrix} F' \\ 1 \end{pmatrix}
\]
A feature is a set of 2D noisy events induced by the same point in 3D.

Our measurements are events $\{e_i := (x_i, t_i)\}_{i=1}^n$, where

$$x_i := p_{\pi(i)}(t_i) + \eta(t_i), \quad \eta(t_i) \sim \mathcal{N}(0, \Sigma), \quad \forall i$$

$\pi : \{1, \ldots, n\} \to \{1, \ldots, m\}$ is an unknown many-to-one function representing the data association between the events $\{e_i\}$ and projections $\{p_j\}$ that generate them.
A feature is a set of events with same flow

\[\| (x_i - t_i v) - (x_k - t_k v) \|^2 \mathbb{1}_{\{\pi(i) = \pi(k) = j\}} = 0, \quad \forall i, k \in [n] \]
But we do not know the association so we will take the expectation

$$\mathbb{E}_{\pi(i), \pi(k)} \left\| (x_i - t_i v) - (x_k - t_k v) \right\|^2 1\{\pi(i)=\pi(k)=j\}$$
Optical Flow Estimation

Data association probability

\[\min_{r,v} \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\sum_{j=1}^{n} r_{ij} r_{kj} \right) \| (x_i - t_i v) - (x_k - t_k v) \|^2 \]

Propagated events through time
E-Step

\[r_{ij}(\{p_j\}) := \frac{\phi((x_i - t_i v); p_j, \Sigma)}{\sum_{l=1}^{m} \phi((x_i - t_i v); p_l, \Sigma)} \]

M-Step (linear least squares)

\[\min_v \sum_{i=1}^{n} \sum_{k=1}^{n} \left[\sum_{j=1}^{m} r_{ij} r_{kj} \right] \left\| (x_i - t_i v) - (x_k - t_k v) \right\|^2 \]
How long temporal window?

0.5ms window 2ms window 5ms window
How do we choose the right temporal window?

\[\tau = \frac{k}{||v||_2} \]

\[\tau = 0.05s \]

\[\tau = 0.02s \]
Over longer time:
Monitor quality of feature with an affine motion model!

Good Features to Track

Jianbo Shi
Computer Science Department
Cornell University
Ithaca, NY 14853

Carlo Tomasi
Computer Science Department
Stanford University
Stanford, CA 94305
Drift Correction - Stabilization

Data association

Warped propagated events

Template points

\[\min_{A, b, r} \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} (A(x_i - t_i v) + b - p_j)^2 \]
Scope of each feature
Results: KLT Comparison

20 windows initialized, no reacquisition if tracks are discarded. Frame based images from DAVIS.
Sparsify and deal with aperture problem: FAST corner selection in the aggregation of warped images.
Visual Inertial Odometry

- Given the event-based feature tracks and a set of IMU observations, how do we obtain an accurate estimate of the camera pose?
- MSCKF (Roumeliotis’ group)
- Enforce 3D rotation in 2D tracking
Instead of affine warp...

We use the current estimate of rotation and we estimate only scale and local translation

\[y^i_k = \pi \left(i^* R_i \left(\frac{l^i_k}{1} \right) \right) - \pi \left(i^* R_i \left(f(T_i) + u_i dt_i \right) \right) \]
Outlier Rejection

• The EKF uses the L2 loss, and so is very susceptible to outliers in the measurements. To remove these outliers, we apply two RANSAC steps during the tracking.

• **RANSAC 1: Pure Translation**
 • After each temporal window, two point RANSAC is applied given the rotation estimated from the IMU to reject failed trackers.

• **RANSAC 2: Triangulation over frames**
 • As each feature track is residualized, a second RANSAC step is applied to find the largest inlier set that agrees on a 3D pose of the feature, given the observations and their corresponding camera poses.
EVIO Summary

Results: General Scene
Results: HDR Scene

Time 1.010 seconds

Penn Engineering | GRASP Laboratory
General Robotics, Automation, Sensing & Perception Lab
Results: Motion Independent of Camera
The future of robot vision is event-based!