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Abstract— In this paper, we propose a novel, efficient stereo
visual-odometry algorithm for ground vehicles moving in out-
door environments. To avoid the drawbacks of computationally-
expensive outlier-removal steps based on random-sample
schemes, we use a single-degree-of-freedom kinematic model
of the vehicle to initialize an Iterative Closest Point (ICP)
algorithm that is utilized to select high-quality inliers. The
motion is then computed incrementally from the inliers using
a standard linear 3D-to-2D pose-estimation method without
any additional batch optimization. The performance of the
approach is evaluated against state-of-the-art methods on both
synthetic data and publicly-available datasets (e.g., KITTI and
Devon Island) collected over several kilometers in both urban
environments and challenging off-road terrains. Experiments
show that the our algorithm outperforms state-of-the-art ap-
proaches in accuracy, runtime, and ease of implementation.

I. INTRODUCTION

Visual Odometry (VO) is the process of estimating the
motion of a moving vehicle using video input from its
onboard cameras. VO is a valid alternative or supplement to
other ego-motion-estimation systems, such as wheel odom-
etry, global positioning system (GPS), inertial measurement
units (IMUs), or laser scanners.

In the past 30 years, a tremendous amount of research
has focused on visual odometry using monocular [1], [2]
and stereo [1], [3], [4] cameras. Most of the VO approaches
work by detecting robust point correspondences between
consecutive frames, by removing the wrong associations (i.e.,
outliers), and, finally, by estimating the incremental motion
from the remaining inliers. A comprehensive tutorial on VO
can be found in [5], [6].

One of the most challenging problems in VO is data
association. For motion estimation in the presence of outliers,
the RAndom SAmple Consensus (RANSAC) [7] has been es-
tablished as the standard method; techniques, such as 5-point
RANSAC [8], for monocular VO, and 3-point RANSAC [9],
for stereo VO, are now widely used. However, because the
number of RANSAC iterations is exponential in the number
of parameters that describe the motion,3 several works have
used motion constraints to reduce the number of iterations
of RANSAC. In [10], [11], non-holonomic constraints of
wheeled vehicles were exploited to parameterize the motion
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3E.g., five parameters are needed to describe the unconstrained motion
(6DoF) of a single camera: six minus the scale factor.

using only one parameter, thus, significantly reducing the
number of RANSAC iterations. Until now, non-holonomic
constraints of wheeled vehicles have been applied only to
monocular systems [11], [12].

In this work, we are interested in incrementally estimating
the ego-motion of the vehicle purely from a sequence of
stereo images while taking full advantage of the kinematic
model. We extend the one-point algorithm proposed in [11]
to stereo cameras, where the motion prior is not directly
used to reject outliers but to provide a good and efficient
initialization for an ICP-based 3D registration. We show
that, after the 3D registration, a set of high quality (i.e.,
low depth uncertainty) inliers is preserved; then, motion
estimation is done over all found inliers through minimizing
the reprojection error. Compared to RANSAC-based stereo-
VO methods, which are based on random sampling, our
approach has the advantage of being fully deterministic
(i.e., given a set of correspondences, it returns always the
same motion estimate, unlike RANSAC). Additionally, it is
also more accurate, given that only a small set of high-
quality inliers is used to estimate the motion (unlike standard
methods, which use all the inliers).

The reminder of the paper is organized as follows. In
Section II, we review the related work. In Section III-B, we
briefly describe the feature detection and tracking technique.
In Section III-C, we explain how to compute the motion prior
used to initialize the ICP. In Section III-F, we describe the
proposed model-based ICP method for selecting high quality
inliers. Finally, in Section IV, we present the experimental
results on both synthetic and real data.

II. RELATED WORK

Works on stereo-based pose estimation from two sets of
corresponding features can be divided into two categories
depending on whether the feature correspondences are spec-
ified in two or three dimensions. If the two feature sets
are both specified in 3D, the problem takes the name of
3D-to-3D registration or absolute orientation. The solution
consists of finding the transformation that minimizes the L2

distance between the two 3D feature sets. If one feature set
is specified in 3D and the other one in 2D, the problem takes
the name of 3D-to-2D pose estimation or Perspective from n
points (PnP). The solution, in this case, consists of finding
the transformation that minimizes the image reprojection
error of the 3D points into the other image [13]. The
minimal case involves three 3D-to-2D correspondences. This
is called perspective from three points (P3P) and is usually
implemented in a 3-point–RANSAC fashion [1].



In his landmark paper [1], Nister pointed out that 3D-to-
2D methods are superior to 3D-to-3D methods. The reason
is that 3D points carry higher uncertainty since they are
computed via stereo triangulation of noisy 2D image points.
Given their superiority, 3D-to-2D methods are now widely
used in VO; 3-point RANSAC (or P3P RANSAC) has
become the golden standard algorithm for robust motion
estimation in the presence of outliers [2], [14], [15].

3D-to-3D methods were popular in early vision-based
motion-estimation systems, especially in a series of works
by NASA [3]. The Iterative Closest Point algorithm [16] can
be regarded as an iterative solution of the 3D-to-3D problem,
which is widely used in laser-scanner–based registration
problems [17]. Only a few works have applied ICP to stereo
VO [18], [19]. In [18], Milella and Siegwart integrated image
intensity and 3D stereo information into an ICP scheme to
implement 6DOF ego-motion estimation. In [19], Tomono
implemented a randomized-ICP algorithm (combined with
the RANSAC paradigm) to estimate camera pose from a
reference image and an 3D Map.

In the last three years, due to the rapid developments of
RGB-D sensors, several works have reintroduced ICP (com-
bined with photometric information) for motion computation
[20], [21]. Newcombe et al. [22] computed camera pose via
ICP registration with Truncated Signed Distance Function.
In [20], Tykkälä considered VO as a 3D surface registration
problem using dense structure information from images; a bi-
objective cost function was proposed to minimize both pho-
tometric and depth error between subsequent image frames in
order to compute the camera-motion parameters. However,
all these works are limited to static indoor environments.
Conversely, in this paper, we tackle challenging dynamic
outdoor environments.

The use of vehicle kinematic constraints for VO has
appeared in several works [10]–[12], [23]. Vatani et al.
[23] used the Ackermann steering principle and the planar
assumption to constraint the motion model; 2D planar motion
was then estimated directly using pixel displacement from a
down-looking camera. Using the car kinematic model, Zhu
et al. [12] computed the motion parameters by solving a
quadratic polynomial from equations established by epipolar
constraint. For general wheeled vehicles, Scaramuzza et
al. [10], [11] showed that, due to the existence of the
Instantaneous Center of Rotation, the motion can be locally
described as planar and circular, and, therefore, the motion
model complexity is reduced to 1DoF, leading to a one-
point minimal solver. However, their restrictive model is
based on the assumption that the motion is locally pla-
nar and circular, which can often be violated in outdoor
environments, even when the road looks perfectly flat. If
we look at the combination of the camera and the car as
a spring-mass system, when acceleration, deceleration, or
sharp turns occur, the planar-motion hypothesis may fail due
to the dynamic characteristics of suspensions and tires. For
these reasons, in their latest work [24] the authors relaxed the
constraint of locally planar and circular motion. A prior was
used to compute the target distribution of the 6DoF motion,

//FRAME 0 Initializaton
{ ul0 }=DETECT FAST CORNERS( Il0 );
{ur0, N}=LEFT RIGHT MATCH ( Il0, Ir0 );
{ X0 }=STEREO TRIANGULATE( ul0, ur0 );
//FRAME k k=1,...
for (k=1; k++) {
{ ulk }=LUCAS KANADE TRACKING ( ulk−1 );
{ urk, N}=LEFT RIGHT MATCH( ulk , urk );
{ Xk }=STEREO TRIANGULATE( ulk , urk );
//One point algorithm i=1,...
for (i=1; i ≤ N; i++)
{iθ}=ONE POINT ESTIMATE( iulk,

i ulk−1,K );
θ?=argmax(Histogram(iθ), i=1:N );
{R1, t1}=MOTION MODEL( θ? );
//ICP refinement
{X′k}=TRANSFORM( Xk, R

1, t1 );
{Xc

k}=ICP REFINEMENT( X′k , Xk−1 );
for (i=1; i ≤ N ; i++)
{id}=RMS EUC DISTANCE( iXc

k,
iXk−1 );

{dth}=HALF NORMAL FITTING( Hisgtogram{id} );
{ in ulk , in ulk−1, in Xk−1 }=THRESHOLDING( {id}, dth );
//Closed-form optimization
{Rk, tk}=EPNP( in ulk , in ulk−1, in Xk−1 );

}

TABLE I: Pseudo code of our algorithm. ONE POINT ESTIMATE implements Eq.
(5); MOTION MODEL implements Eq. (6); in ? denotes the inliers; all notations can
be found in the corresponding sections. Notice that for each new frame, new FAST
corners are initialized and tracked to the next frame. For simplicity, we omitted this
in the pseudo code.

leading to increased performance compared to the one point
algorithm. However, their method was developed only for
monocular systems and is, therefore, not directly suitable
for stereo applications.

III. APPROACH

Our VO algorithm is based on four steps. In the first
step, we detect FAST corners [25] in the left image and
track them using a Lucas-Kanade tracker (KLT) [26]. Stereo
matches are then found based on Census transform [27].
In the second step, the motion prior is estimated from 2D
feature correspondences using the one-point algorithm [11]
and the scale determined through a voting scheme. In the
third step, the two 3D point sets are aligned using ICP
and inliers are identified without any random sampling; due
to the accurate motion prior, the algorithm converges very
fast. Finally, all selected inlier features are used to estimate
the motion parameters using EPnP. The pseudo-code of the
algorithm is given in Table I.

A. Problem Formulation and Notations

Let I lk−1, Irk−1, I lk, Irk be two left-right image pairs at
times k − 1 and k, respectively. We denote by ulk−1, urk−1,
ulk, urk their image correspondences and by Xk−1 and Xk the
triangulated 3D points (Figure 1). Given intrinsic calibration
matrix K (which is assumed constant throughout the whole
sequence), the baseline b, the rotation matrix Rk, and the
translation vector tk, we can write:

ûlk−1 ∼ P lX̂k−1,

ûrk−1 ∼ P rX̂k−1,

ûlk ∼ P l
′
X̂k−1,

(1)



where ·̂ denotes the homogeneous coordinates and ∼ means
equality up to scale. P l = K[I|0], P l′ = K[Rk|tk] are the
left projection matrices at times k − 1 and k respectively,
while P r = K[I|[−b, 0, 0]T ] is the right projection matrix at
time k−1. The alignment between the two 3D world points
is then given by:

Xk−1 = Rk ·Xk + tk. (2)

Normalized image coordinates of feature points are first
computed as

ūk = K−1 · ûk (3)

and then projected onto the unit sphere (i.e., ||ū|| = 1).
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Fig. 1: C0 refers to the initial camera position and act as the world reference frame.
Rk,k−1 and tk,k−1 denote the motion parameters from frame k − 1 to frame k.

We solve the relative-motion estimation as a 3D-to-3D
registration problem by computing the incremental motion
parameters Rk and tk that minimize the L2 norm between
the triangulated 3D points:

< Rk, tk >= arg min
Rk,tk

∑
i

||Xi
k−1 −Rk ·Xi

k − tk||. (4)

Because 3D-to-3D registration methods are greatly affected
by the depth uncertainty of the computed 3D points, it is
crucial that the two points sets Xk−1 and Xk contain only
high-quality inliers, i.e., with very low uncertainty. The great
advantage of 3D-to-3D methods with respect to 3D-to-2D
approaches is that they do not need to reproject the 3D points
in the images, saving, thus, computation. This peculiariy
makes this class of methods extremely attractive for low-
power embedded computers, such as those used on space
rovers [3].

B. Feature Detection and Tracking

FAST corners are detected in I lk−1 and tracked in I lk using
a KLT tracker with subpixel refinement. Stereo correspon-
dences (between I lk−1 and Irk−1 and between I lk and Irk) are
determined using Census transform (calculated on a 9 × 9
pixels patch) and epipolar geometry.

To keep a minimum number of feature points in every
frame, we use the bucketing technique mentioned in [14],
which guarantees that the features are nearly uniformly
distributed in the whole image: the image is first partitioned

into cells; when the number of tracked features in each cell is
lower than a threshold (20 in this work, cell size = 100×100
pixels), a new detection is triggered.

C. Motion Model

As shown in [10], [11] for any wheeled robot, the exis-
tence of the instantaneous center of rotation makes it possi-
ble to describe the local motion of the vehicle as planar and
circular. Under this constraint, the motion model complexity
reduces to one degree of freedom (i.e., the rotation angle),
leading to a one-point minimal solver. This implies that it is
sufficient to use only one feature correspondence to recover
the yaw angle increment θ as well as the translation angle
ψ = θ/2 [11]. Consider a set of 2D feature correspondences
{iuk−1 ↔i uk}, i = 1 : N , where N is the number of feature
points. For each feature correspondence iuk−1 ↔i uk, the
yaw angle increment can be determined using [11] as

iθ = −2 arctan
iūk−1(2) ·i ūk(1)−i ūk−1(1) ·i ūk(2)
iūk−1(3) ·i ūk(2) +i ūk−1(2) ·i ūk(3)

.

(5)
Based on this 1DOF motion model, as proposed in [11] we
compute the best estimate of the yaw angle increment as
θ? = median{iθ}. Using θ?, we parametrize the rotation
matrix R1 ∈ SO(3) and translation vector t1 ∈ R3 as

R1 =

cos(θ?) 0 − sin(θ?)
0 1 0

sin(θ?) 0 cos(θ?)

 , t1 =

sin(ψ?)
0

cos(ψ?)

 , (6)

where ψ? = θ?/2 according to the 1DOF motion model.

D. Model Usability Analysis

This restrictive motion model is based on two assumptions:
i) locally planar and circular motion; ii) high frame-rate
image input. The second requirement is relatively easy to
fulfill with the current camera technology; however, the first
assumption can often be violated in outdoor environments,
even when the road looks perfectly flat. Indeed, if we look at
the combination of the camera and the car as a spring-mass
system, when acceleration, deceleration, or sharp turns occur,
the planar-motion hypothesis may fail due to the dynamic
characteristics of suspensions and tires. For these reasons,
in their latest work [24], the authors propose a Model-
based Random Sampling algorithm (called MOBRAS). They
relax the constraint of locally planar and circular motion:
the relative motion is modeled as a multivariate Gaussian
distribution over the predominantly planar-circular motion
which is computed from the image points according to
(5) and (6), while the additional motion parameters (roll,
pitch, and the elevation angles) are considered as zero-mean
Gaussian variables. Motion hypotheses are then generated
from this normal distribution and the inliers are identified
through reprojection error.

In this section, we compare the outlier-removal perfor-
mance of the original 1-Point algorithm [11] and MOBRAS
[24] using simulation platform presented in our previous
work [28]. We simulate a car moving in complicated path



with many sharp turns as well as many accelerations and
decelerations using different velocity level.

Since the inlier identification procedure can be regarded
as a binary classification problem, we can use sensitivity and
specificity as the evaluation metrics. We define True Positive
(TP ) as the number of true inliers found and False Negative
(FN ) as the number of true inliers missed. Then, we define
True Negative (TN ) as the number of true outliers found and
False Positive (FP ) as the number of true outliers identified
as inliers. To compute the true inliers and true outliers, we
use ground truth poses and a reprojection-error threshold of 1
pixel. Then sensitivity (also called true-positive rate or recall
rate) and specificity (or true negative rate) can be computed
as:

sensitivity =
TP

TP + FN
, specificity =

TN

TN + FP
(7)

In the ideal cases, we would like sensitivity = 1 and
specificity = 1.
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Fig. 2: Sensitivity and Specificity. Comparison between 1-Point [10] and MOBRAS
[24] algorithms.

The relation between sensitivity, specificity, and the vehi-
cle velocity is depicted in Figure 2. Thick red bars denote
the median of the errors. The meaning of boxes is given in
detail in Section IV. From the distribution of sensitivity, we
can observe that MOBRAS finds on average more true inliers
than the 1-Point algorithm, whose detection ratio decreases
severely as the velocity increases. However, the specificity
plot indicates that both methods suffer from false positives
(even though very small, specificity = 0.98), which can
corrupt the motion estimation result. However, we will show
in the next sections that by leveraging the depth information
from both cameras, it is possible to make specificity perfectly
equal to 1 and, thus, improve the motion estimate.

E. Scale Computation

The 1-Point algorithm is a monocular method, which
means that the metric scale (i.e., length) of the translation
vector t1 can only be obtained using additional sensor
information, such as the speed from the CAN bus [10]. In
stereo-vision applications, the scale is obviously a direct
outcome of motion computation. However, as mentioned
in section II, state-of-the-art methods are based on random
schemes, such as RANSAC, and are very sensitive to the
quality of inliers. Our goal is to avoid random schemes and
rely on good quality inliers.

We use the depth information from triangulated features
to get a fast estimate of the translation distance. Obviously,
once the rotation is known, the translational component (in
the absolute scale) can be recovered from a single 3D-point
correspondence. For more than one correspondence, due to
the presence of outliers, we cannot directly use least-square
methods. Here, we propose a model-based scaling method.
The main idea is to compute the component of the translation
vector of every 3D correspondence along the direction t1

(estimated through the 1-Point algorithm), and, then, to get
the model scale s1 by voting. Consider two triangulated
point clouds at times k − 1 and k. For every 3D point
correspondence {iXk−1,

iXk}, we calculate its translation
vector using the rotation matrix R1 estimated form the 1-
Point algorithm, that is

it =i Xk−1 −R1 ·i Xk.

Then, as shown in Figure 3, we compute the component is
of it along the direction of t1, which can easily calculated
by dot product as

is =i t · t1.

After obtaining the set {is}, we select the median value s1 =
median{is} as the best estimate of the scale. Finally, we
rescale the translation hypothesis t1 as

t1 ← s1t1.

Note that the median should be calculated in a reasonable
range, which should be determined by the vehicle speed and
frame rate. In the KITTI dataset, the speed is always below
90km/h = 25m/s and the frame rate is 10Hz; therefore,
we restrict the scale values to the interval [0,3] meters.
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Fig. 3: Projection of the individual translation vectors onto the direction computed
with the 1-Point algorithm.

F. Model-based ICP

ICP is a widely-used method for registration of 3D point
clouds, which is particularly suitable for the automatic
alignment of data generated by a laser scanner. ICP works
by iteratively revising the transformation (translation and
rotation) needed to minimize the distance between the points
of two raw scans. In order to start, the algorithm needs an
initial guess as input. This initial motion hypothesis is crucial
for the ICP registration to be successful. In laser odometry
for ground robots, this initial guess is provided through wheel
odometry.



In our settings, we do not use any other additional source
of information than cameras. As an initial hypothesis, we use
the 1DOF motion model (R1, t1) computed in Section III-C,
with t1 rescaled are described in the previous section. This
choice makes our ICP converge extremely fast, typically no
more than 3 iterations. In the remainder of this paper, we
will call our proposed algorithm MICP (Model-based ICP).

Given two 3D point sets Xk−1, Xk and the motion
hypothesis R1 and t1, we first transform the point cloud Xk

into X ′k as
X ′k = R1 ·Xk + t1.

Then, we implement an ICP refinement between Xk−1 and
X ′k to obtain the transformation Rc and tc. We avoid the
costly nearest-neighbor search using the known image-point
correspondences. At each iteration, 3D correspondences
whose residual error is larger than a given threshold are
removed (in this work, we set the threshold to 2.0 meters).
The process stops when the change in median residual error
between two successive iterations is less than 0.1 meter.

By defining the residual errors di as the Euclidean distance
between the model iX and registered one iXc = Rc ·iX ′k +
tc, we can analyze the distribution {di} of the residuals. First,
we build a histogram of {di} with a bin size of 0.1 meters.
Figure 4 shows an example histogram Hd of residual errors
di obtained from real data. As observed, the motion model
has been improved remarkably by the ICP refinement, which
makes the residual errors tend to be minimum.
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(a) Residual histogram after 1
point registration
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(b) Residual histogram after MICP
registration

Fig. 4: Distribution of the residual errors after the 1-Point algorithm and after MICP.

After ICP refinement, it is straightforward to distinguish
inliers and outliers by thresholding the residual errors with
threshold dth. However, a fixed threshold does not guarantee
a sufficient level of feature quality on the entire dataset. In
recent works utilizing ICP with truncated signed distance
function for dense 3D registration, Normal distribution or
Student’s t-distribution was used to fit the residuals [22].
In this work, we fit the residual errors with a half-normal
distribution, whose probability function is

P (x) =
2α

π
e−x

2α2/π. (8)

Given the histogram Hd, we can estimate the parameters of
the half-normal distribution using

α =
1

µ
, (9)

σ2 =
π − 2

2α2
, (10)

where µ denotes the mean value of residual errors. The
fitting result is shown in Figure 4(b), where the red curve
represents the fitted half-normal probability function. Here,
we empirically choose 1σ as the threshold to select the
inliers.

G. Non-iterative optimization

An optimization step with all the selected inliers is
eventually performed to refine the final estimate of inter-
frame motion. We use Efficient PnP (EPnP) [29], which
is a non-iterative method, whose computational complexity
grows linearly with the number of correspondences used.
The main idea behind (EPnP) is to express all 3D points
as a weighted sum of four virtual control points, then the
problem is reduced to estimating those coordinates. In this
work, the optimization using EPnP costs on average only 3
milliseconds for each frame.

IV. EXPERIMENTS

In this section, we test our algorithm on both synthetic
and real data. In the simulation tests, MICP is compared
with MOBRAS and standard P3P RANSAC, while in the
real tests with state-of-the-art visual-odometry algorithms.

The performance evaluation of 6DOF motion parameters
is carried out in terms of translation and rotation error,
respectively. We use the error metrics proposed by the
authors of the KITTI dataset [30]. Let us denote by gR and
gt the ground-truth relative motion and by eR and et the
estimated relative motion. We can then calculate the error
transformation ∆T as:

∆T =

[
∆R ∆t
0 1

]
= TeTg

−1, (11)

where

Tg =

[
gR gt
0 1

]
, Te =

[
eR et
0 1

]
.

Then, the translation error errt is defined as the Euclidean
norm of the translation vector ∆t:

errt = ‖∆t‖ =
√

∆x2 + ∆y2 + ∆z2. (12)

The rotation error errr is defined from the axis-angle repre-
sentation of the rotation matrix ∆R as:

errr = arccos

(
trace(∆R)− 1

2

)
. (13)

A. Tests on synthetic data

In this section, we evaluate the performance of our al-
gorithm on synthetic data. As in [11], we simulate a car
moving in urban canyons composed of several facades. The
first car location is at the origin while the second one is
generated at random using the car kinematic model. To
make the simulation more realistic, we set the simulation
parameters as shown in Table II. To evaluate the robustness
of the algorithm, we vary the fraction of outliers in the data
from 10% to 80%.



Parameter Values
Maximum yaw angle change θmax 10 [degree]
Maximum pitch angle change βmax 1.0 [degree]
Maximum roll angle change γmax 1.0 [degree]

Maximum elevation angle δmax 0.5 [degree]
Variance of Gaussian noise 0.5 [pixel]

Moving distance ρ 1.0 [meters]
Maximum iteration number of RANSAC 1000

Maximum sampling number of MOBRAS 1000
Reprojection error threshold 0.5 [pixel]

TABLE II: Simulation parameters: Gaussian noise is assumed isotropically distributed
in the x and y image directions. The rotation increment is modeled by three angles:
yaw θ, pitch β, and roll γ. The planar component of the translation vector is modeled
as a function of θ, while the elevation component by the angle δ. The translation
length ρ is considered constant in the whole simulation.

We evaluate the performance of MOBRAS [24], P3P
RANSAC [9] and our MICP algorithm. The evaluation
consists of two parts:

1) Sensitivity and Specificity of true-inlier detection
(we follow the definition of TP , FP , TN , FN ,
sensitivity, specificity of Section III-C);

2) Accuracy of final motion estimation versus the per-
centage of outliers (for all the three algorithms, we
compute the final pose from the detected inliers using
EPnP [29]).

The resulting statistics for one thousand trials is shown in
Figure 5 and Figure 6 using box plots. Thick red bars denote
the median of the errors; the higher border of the rectangles
denotes 75% percentiles while the lower border represents
the minimum value of the errors; the top end of the dash
lines denotes 90% percentiles. Note that we use 1000 random
iterations in the P3P RANSAC method, which, according to
the RANSAC statistics [7], should provide a probability of
success of 99.97% (calculated assuming a fraction of outliers
equal to 80%).

In Figure 5, it can be noticed that, although our MICP
algorithm does not find a high percentage of inliers, its false
positive rate is always zero (as much as P3P RANSAC).
However, as observed in Figure 6, MICP+EPnP actually
outperforms P3P RANSAC+EPnP and MOBRAS+EPnP,
whose sensitivity is much higher. The reason for this can
be found by investigating the quality of detected inliers.

As shown in Table II, image noise up to 0.5 pixel is
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Fig. 5: Sensitivity and specificity of true-inlier detection

added to all the image feature locations. In the motion
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Fig. 6: Accuracy of final motion estimation versus the percentage of outliers.

estimation step, 3D point locations are calculated from the
noisy 2D measures. Since the depth of a 3D point is inversely
proportional to the disparity of its corresponding image
points, distant points will have larger uncertainty. Here, we
are interested in analyzing the uncertainty distribution of
the triangulated 3D points, which is shown in Figure 7. As
expected, the distribution of the 3D-position uncertainty of
the inliers found by MICP is significantly narrower than
the distributions found with the other two methods. This
confirms our previous claim that not only does MICP aim
to find inliers but also high quality inliers, that is, features
with low depth uncertainty. Conversely, points with high
depth uncertainty cannot be rejected by RANSAC as the
reprojection error of those points is small in any case. This
explain the larger error of P3P RANSAC in the motion
estimate in Figure 6.
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Fig. 7: Distribution of the 3D position error with different algorithms: P3P RANSAC
(a), MOBRAS (b), MICP (c).

B. Tests on the KITTI benchmark

We evaluate our algorithm on the KITTI benchmark,
which consists of 22 stereo sequences. The camera baseline
is 0.54 meter, the raw image resolution is 1392×512 pixels,
and the image acquisition frame rate is on average 10 frames
per second. For the training sequences 00-10, ground truth is
provided, while for test sequences 11-21 there is no ground
truth. The errors are evaluated as a function of trajectory
length and car speed as defined in [30].

We compare both efficiency and accuracy of our algorithm
with several algorithms based on RANSAC outlier-rejection
schemes, including LIBVISO2 [31], TGVO [14], VO3pt
[15], and VOFS [32]. We compare the results over all test
sequences 11-21 (indeed, these are the only sequences for



Method Translation Rotation
MICP VO 2.13% 0.0065[deg/m]
LIBVISO2 2.44% 0.0114[deg/m]

VO3pt 2.69% 0.0068[deg/m]
TGVO 2.94% 0.0077[deg/m]
VOFS 3.94% 0.0099[deg/m]

TABLE III: Overview of of average translation and rotation error on KITTI sequences
11-21.

which KITTI allows users to download results from the other
contributors). All the performance statistics of these algo-
rithms (including our MICP VO) are publicly available on
the KITTI website.1 An overview of the average translation
and rotation errors calculated over the eleven test sequences
for the different algorithms is shown in Table III. The results
are sorted according to the average translation error. As
observed, MICP VO is superior than other algorithms in term
of both translation and rotation, and the latter is typically
the main source of drift in visual odometry. 2 Indeed, if
we compare the trajectories estimated with the different VO
algorithms (Figure 8), MICP VO is the one that appears
closer to the ground truth. More details on the error statistics
can be found on the KITTI website.
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Fig. 8: Estimated Trajectories: Comparison between MICP VO, LIBVISO2, TGVO,
VO3pt, VOFS. Data from the KITTI evaluation website.

Tables IV and V show the execution-time statistics of
MICP compared to the other algorithms. The test platform
used all the experiments is a laptop PC with an Intel Core
i7-3720QM CPU at 2.60 GHz and with 16GB of RAM.
As observed, our system outperforms in execution time the
other implementations, taking only 40ms (all the pipeline,

1http://www.cvlibs.net/datasets/kitti/eval_
odometry.php

2We didn’t compare with MFI and D6DVO, because the former is a
multi-frame approach while the latter is a dense method

Timing [ms]
Procedures Min Median Max

Model prediction 0.58 1.179 2.483
ICP 0.925 2.977 5.798

Optimization 1.074 2.339 4.032

TABLE IV: Execution time of motion estimation pipeline. The vary of estimation time
is primarily due to mutative number of features.

Algorithm Runtime
[ms]

Environment

MICP VO 40 1 core @2.6 Ghz (C/C++)
LIBVISO2 50 1 core @2.6 Ghz (C/C++)

TGVO 60 ∗ 1 core @2.5 Ghz (C/C++)
VO3pt 560 1 core @2.0 Ghz (C/C++)

LIBVISO2 510 1 core @2.0 Ghz (C/C++)

TABLE V: Runtime Comparison between different algorithms (∗ Feature Detection
and Tracking are not included)

including feature extraction and tracking).

C. Test on DEVON benchmark

To demonstrate that our algorithm can also handle non
flat, off-road, and rough terrains, we also test it on the
very challenging DEVON Island Rover Navigation dataset
[33]. This dataset is a collection of images and other sensor
data gathered at a Mars/Moon analogue site on Devon
Island, suitable for robotics research. This dataset has be-
come extremely popular for benchmarking VO algorithms
for planetary rovers. Here, we compare our MICP VO with
P3P RANSAC and LIBVISO2 on all 23 sequences provided
by this dataset. For every sequence, we calculate the absolute
position error relative to the traveled distance; the results are
listed in Table VI. Part of the estimated trajectories are
shown in Figure 9.
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Fig. 9: Estimated Trajectories : Comparison between MICP VO, P3P RANSAC,
LIBVISO2

As observed in Table VI, in most situations (notably, in 15
out of 23 sequences) MICP VO achieves the best estimation,
which confirms our simulation results, i.e., that although the
ICP is initialized from the 1-Point algorithm (which is based
on a predominantly planar and circular motion) it manages to



Algorithm Seq0 Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7
MICP VO 3.558 12.394 9.865 2.0768 1.484 5.496 9.262 14.284

P3P 10.728 9.012 12.036 3.810 8.528 4.393 17.113 15.464
LIBVISO2 17.072 12.569 8.047 7.684 4.434 20.338 22.762 16.765
Algorithm Seq8 Seq9 Seq10 Seq11 Seq12 Seq13 Seq14 Seq15
MICP VO 2.6256 12.621 10.234 9.416 24.270 9.988 20.597 7.729

P3P 12.454 3.992 11.344 23.702 30.302 4.399 50.627 8.042
LIBVISO2 12.002 15.660 21.752 23.294 38.391 17.793 23.259 14.131
Algorithm Seq16 Seq17 Seq18 Seq19 Seq20 Seq21 Seq22 Average
MICP VO 11.121 6.134 7.391 5.061 9.385 7.701 11.075 9.294

P3P 8.311 17.765 12.615 5.372 9.890 10.464 10.699 13.090
LIBVISO2 19.183 24.030 18.649 6.353 18.388 9.369 3.290 16.314

TABLE VI: Position error of experiments run on all twenty three Devon Island
sequences. For every sequence, the winner is shown in bold.

relax the motion constraint, thus, achieving accurate motion
estimation results in distinct types of environments. More
results, such as in presence of dynamic objects (like moving
cars) and different sequences, can be seen in our video
attachment.

V. CONCLUSION

In this paper, we presented a novel and fast stereo visual
odometry algorithm (called MICP) for wheeled vehicles
moving in dynamic outdoor environments. We extended the
one-point algorithm proposed in [11] to stereo cameras,
where the motion prior is not directly used to reject outliers
but to provide a good and efficient initialization for an
ICP-based 3D registration. We showed that, after the 3D
registration, a set of high quality inliers is preserved.

Compared to RANSAC-based stereo-VO methods, which
are based on random sampling, our approach has the advan-
tage of being fully deterministic. Additionally, it is also more
accurate, given that only a small set of high-quality inliers is
used to estimate the motion (unlike standard methods, which
use all the inliers).

We successfully tested our algorithm on two large image
datasets, spanning dozens of kilometers: the first one col-
lected from a car while driving in a urban environment; the
second one from a planetary rover navigating on a rough,
outdoor terrain. Experiments show that the our algorithm
outperforms state-of-the-art approaches in accuracy, runtime,
and ease of implementation.
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