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Abstract— In this paper, we give a new double twist to the
robot localization problem. We solve the problem for the case
of prior maps which are semantically annotated perhaps even
sketched by hand. Data association is achieved not through
the detection of visual features but the detection of object
classes used in the annotation of the prior maps. To avoid
the caveats of general object recognition, we propose a new
representation of the query images that consists of a vector of
the detection scores for each object class. Given such soft object
detections we are able to create hypotheses about pose and
to refine them through particle filtering. As opposed to small
confined office and kitchen spaces, our experiment takes place
in a large open urban rail station with multiple semantically
ambiguous places. The success of our approach shows that our
new representation is a robust way to exploit the plethora of
existing prior maps for GPS-denied environments avoiding the
data association problems when matching point clouds or visual
features.

I. INTRODUCTION

In this paper, we are dealing with the problem of local-
ization based on known maps. Research on SLAM—metric
or topological—has flourished in the past decade producing
maps in terms of point clouds, occupancy grids, or graphs
of poses and landmarks. Such maps are used by robots to
localize themselves and retraverse the mapped space. While
we use the same probabilistic inference as in the classic
probabilistic map-based localization [1], our representation is
completely different for both the prior map and the sensorial
data.

There is an abundance of prior maps for GPS-denied en-
vironments, which are semantically annotated and have been
produced even with a rough sketch. Semantic annotations
represent positions on the map of objects of known classes.
Even if more sensor data is available about a map (like visual
features) we believe that matching a query image to any
place in the database is more robust to changes in viewpoint
and illumination variations when we match object classes
rather than visual features like SIFT and SURF or range
features like corners and walls. Obviously, these advantages
are offset by the increased complexity required to learn and
detect objects. Furthermore, traditional object detectors are
heavily biased towards images in which the object is centered
and well focused.

Although these assumptions are safe in a traditional object
detection task, they are not true in our localization setting.
Not only do images from a moving camera suffer from bad
focus and motion blur, but the desired objects are generally
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Fig. 1: Typical images from a moving platform. (top) Frontal
view, object is off-center with severe perspective distortion.
(bottom) Lateral view, significant motion blur.

found off-center, away from the camera’s motion path (Fig.
1).

We depart from the traditional object recognition and
localization paradigm by avoiding hard detection of objects.
Instead, we produce for every object a heatmap on the image
representing the probability that the object of a particular
scale appears at a particular position. Such heatmaps might
be multi-modal, indicating the existence of multiple objects
or the hallucination of multiple objects (e.g., false positives).
Given several object classes, the image is then represented
with a vector at each pixel containing all detection scores for
that pixel. This is equivalent to a projection of the image on a
basis consisting of templates representing the object classes.
We have the freedom to learn these templates or even use
single instances of the objects. We can use gradient and/or
color representations for the appearance.

The soft detection signature (or heatmap) of a query image
can be filtered using context for the expectation of objects



and can be marginalized in scale and in the vertical direction
yielding a score vector for every bearing angle. Using this
score vector over bearings and prior locations of objects we
try to estimate 2D position and orientation using particle-
based localization. We perform extended experiments in a
huge indoor space (urban train station) with a hand annotated
prior map. We show that short sequences of panoramic
images are sufficient for localization using only few object
categories.

To summarize, this paper advances the state of the art with
the following contributions:

• It solves the localization problem using prior maps
containing objects instead of point clouds or visual
features.

• We present a new image representation that instead of
containing the transition of signal to symbol1 contains
at every pixel a signature of all object-detection scores
avoiding a hard-detection commitment. Precision-recall
curves are not necessary on our approach because we
do not apply any threshold.

• Object detection scores can be established with very
simple representations, such as color or gradient dis-
tributions. We localize the robot with particle filter
and show experimentally that it converges to one or
more locations based on the intrinsic ambiguity of the
environment.

The structure of the paper is the following. Section II
reviews the related work. Section III presents our soft object-
detection strategy. Section IV describes the particle filter
localization based on heatmaps. Finally, sections V and VI
present the experimental results and draw the conclusions,
respectively.

II. RELATED WORK

Our approach on using semantic information for local-
ization has been motivated by Kuipers’ spatial semantic
hierarchy paradigm [2]. The most related work to ours is
Rangananathan and Dellaert’s [3], who use a generative
model for a place which has the form of a 3D constellation
with object attributes of shape and appearance. While the
model is probabilistic, the object detection produces a “hard”
unimodal distribution as opposed to our “soft” detection
modeling the probability of having an object at each bearing.
Soft detection has been applied in [4]—called object bank
response map—using a large number of pre-trained generic
object detectors with the goal of scene classification. We have
also been inspired by the concept of classemes introduced in
[5] for novel category discovery while we use it for location
modeling.

Most of the research in object-based localization is tai-
lored for small indoor environments like offices with simple
topology and few object categories. Many approaches detect
doors or gateways ([6], [7], [8]) for place recognition as well
as for detection of passages in a topological sense. Espinace

1By this, we mean that in standard object detection the image (i.e. the
signal) is replaced by a list of labeled bounding boxes (i.e. symbols).

et al. [9] detect the semantics of spaces (kitchens, etc.) and
the objects therein starting from metric and topological maps
in an indoor environment. They use both appearance features
as well as 3D geometry to detect seven object and four scene
categories. Galindo et al. [10] apply a conceptual hierarchy of
things, objects, and rooms to label existing maps. Vasudevan
et al. [11] detect objects as well as passages in order to
categorize and recognize places. Similar to our notion of
location is the notion of clusters in the work of Posner et
al. [12] although it uses directly low level features and not
objects.

Several approaches can be used to produce automatically
the prior semantic maps we use in this paper. Civera et al.
[13] apply appearance and geometry based recognition to
annotate feature maps established with monocular SLAM.
Similar annotation of features or regions on top of SLAM are
undertaken in [14], [15]. Wolf and Sukhatme [16] label 3D
maps based on traversability of terrain using hidden-Markov-
model and support-vector-machine techniques. A different
approach producing maps consisting only of semantic entities
(relational object maps) has been introduced in [17] by
modeling spaces with relational Markov networks.

III. OBJECT DETECTION

Traditional object detectors yield one of the following
representations when processing a query image: boolean flag
[18], bounding boxes [19], and full object (or clutter) seg-
mentation [20]. These often include a score (or probability)
measure of the detection as a whole, but always culminate
in a hard decision (i.e., indicated by a bounding box) as to
the presence of an object.

Instead of relying on bounding boxes or image segmenta-
tion, our system operates on object heatmaps. These are maps
of the likelihood of the object being present. They provide
a value for each pixel (or block of pixels) and give a dense-
detection response for a given query image, as opposed to a
sparse-detection response. This likelihood is normalized in a
global fashion to ensure that results for different templates
and different features are comparable.

We compute heatmaps for two types of local image fea-
tures. These are histograms of normalized gradient energies
(HOGE) computed over blocks of pixels (Sec. III-A) and
histograms of quantized colors (HQC, Sec. III-B). Matching
is performed separately with each feature. Then, the resulting
heatmaps are multiplied together to yield the final object
detection heatmap (Sec. III-C).

Any number of additional image features can be combined
with this approach. We only require two properties from
an image feature: first, that it is computed densely over
the image, yielding a detection value for every pixel (or
block of pixels); second, to successfully combine the output
of an additional feature, it must be possible to normalize
its detection results independently of the template size and
the support-region size. These requirements are very flexible
and, therefore, our system can incorporate a variety of
additional image features to increase discriminability and
improve results.



A. Histogram of Gradient Energies (HOGE)

The desired spatial orientation measurements are realized
via filtering using a set of Gaussian derivative filters, point-
wise squaring and summation over a given spatial region,

Eθ̂ (u,v) = ∑
u

∑
v

Ω(u,v)[GNθ̂
(u,v)∗ I(u,v)]2, (1)

where I(u,v) denotes the input image, ∗ convolution, Ω(u,v)
a mask defining the integration region, and GNθ̂

(u,v) the Nth
derivative of the Gaussian with θ̂ the filter’s orientation.

The initial definition of local energy measurements, (1), is
confounded by local image contrast. This makes it indeter-
minate whether a high response in the filtered imagery, (1),
indicates the presence of the particular spatial orientation or
instead is a low match but yields a high response due to
strong image contrast. To remove contrast-related informa-
tion, the energy measures, (1), are normalized locally by the
ensemble of oriented responses at each point,

Êθ̂i
=

Eθ̂i

ε + ∑
θ̂∈S

Eθ̂
, (2)

where S denotes the set of considered oriented energies, (1),
and ε is a constant that serves as a noise floor (set to 1%
of the expected maximum filter response). In addition, a
normalized ε is computed, as in (2), to explicitly capture
lack of structure within the region delineated by Ω(u,v). 2

The result is a distribution (i.e. histogram) within a given
region of support, Ω(u,v), indicating the relative presence of
a particular set of spatial orientations within neighborhoods
of the input imagery. Finally, to define the template repre-
sentation, the image is divided into non-overlapping regions,
Ωi(u,v), and a normalized energy histogram is computed for
each region (see Fig. 2b).

In summary, (1)-(2) culminate in a distribution (histogram)
indicating the relative presence of a particular set of spatial
orientations within neighborhoods of the input imagery. Sig-
nificantly, the derived measurements are invariant to additive
and multiplicative bias in the image signal, due to the band-
pass nature of (1) and the normalization, (2), respectively.
Invariance to such biases provides a degree of robustness
to various potentially distracting photometric effects (e.g.,
overall scene illumination, sensor sensitivity). Owing to
the oriented energies being defined over a spatial support
region, (1), the representation can deal with input data that
are not exactly spatially aligned. Owing to the distributed
nature of the representation, clutter can be accommodated:
Both the desirable pattern structure and the undesirable
clutter-related structure can be captured jointly so that the
desirable components remain available for matching. Finally,
the representation is efficiently realized via linear (separable
convolution, point-wise addition) and point-wise non-linear
(squaring, division) operations; thus, efficient computations
are realized [21].

2Note that regions where structure is less apparent, e.g., region of
textureless wall, the summation in the denominator approaches zero; hence,
the normalized ε approaches one and thereby indicates lack of structure.

(a)

(b) (c)

Fig. 2: Object Feature Computation. (a) Feature histograms
over uniform pixel blocks (b) Histogram of gradient energies
with 8 orientations (c) Quantized to 64 color image.

B. Histograms of Quantized Colors (HQC)

To incorporate color information, color histograms of
images are computed. In this work, we use the RGB model
but different ones can also be considered. An image is first
quantized from RGB into an indexed color space. The target
color map is created by uniformly sampling the RGB cube
in all three channels. Quantizing each channel into k << 256
bins generates a colormap with k3 distinct RGB values (in
our case k = 4). Each pixel in the image is then mapped to
the closest value in the target colormap. Once quantized, a
histogram of the color indices is computed for each block
of n×n pixels. Finally each histogram is normalized to unit
energy (sum of values equal 1) by dividing each histogram
by the number of pixels per block.

Although this representation is not invariant to large
changes in illumination, drastically reducing the size of the
color space—in this case to k3—eliminates small changes in
illumination since they are lost in the quantization (Fig. 2c).

C. Matching

The output of the matching step of our detector is not a list
of bounding boxes, but rather a two-dimensional heatmap.
The heatmap for each object category is computed via the
Bhattacharyya similarity measure [22] of the object template
features and query features. The maximum responses over
all scales is selected and results from different features are
multiplied together to yield the final heatmap.



Formally, for a m× n image I, the heatmap for a specific
object template T maps every pixel coordinate (u,v) to a
value in [0...1]:

HF
T (I) = max

Scales

Corr
(√

F(Is),
√

F(T )
)

bT
, (3)

where F is the image feature function (either HOGE, or
HQC), and Is represents the image at scale s. Corr is the
standard correlation function and bT is the number of blocks
in the template. Dividing the result by the template size
scales the values to the range [0...1]. We then combine the
heatmaps for each type of image feature using point-wise
product:

HT = HHOGE
T (I) ·HHQC

T (I). (4)

Example heatmaps for HOGE, HQC, and their product are
shown in Fig. 3, b-d respectively.

IV. OBJECT-BASED LOCALIZATION

The goal of localization is to retrieve the robot absolute
position in the environment using all the available informa-
tion from its on-board sensors, such as wheel encoders and
cameras. From computer vision, it is known that the absolute
position of a single calibrated camera can be inferred from
a minimum of three 3D-2D correspondences, that is, the
3D absolute positions of three scene points and the 2D
coordinates of their projections in the camera image [23],
[24]. This method is known as the “perspective three-point
algorithm” (P3P). There are three drawbacks in using P3P
for object-based localization. First, we are not using points
but objects, whose position in the image is not as well
localized as with points. The second one is that we are
using a soft detector and therefore we only get a “likelihood”
(i.e. heatmap) that the object is at a given image coordinate.
Third, P3P requires that three objects be viewed by the robot
simultaneously, a situation that is unlikely to happen in real
environments. In our challenging dataset, no more than two
objects are visible at the same, with most of the images
containing a single object. For these reasons, we opted for
the particle filter localization strategy [1], [25].

In probabilistic map-based localization, we want to esti-
mate the state of the robot at the current time step t, given
the knowledge about its initial state and all the measurements
Zt up to the current state. In our setup, the robot moves
in a planar environment, therefore, our state vector is x =
[x,y,θ ]T , with (x,y) denoting the robot position and θ its
orientation.

The particle filter represents the probability distribution
p(x|Zt) of the robot pose by a set of N particles St = {si

t , i=
1..N} drawn from it. This is done in two phases.

1) Prediction Update: In this phase, we compute the set
of particles St from the previous set St−1 by sampling from
the motion model. We use the motion model of a differential-
drive robot:⎧⎨

⎩
xi

t = xi
t−1 +(vt +ΔV)cos

(
θ i

t−1 +Δθ/2
)

yi
t = yi

t−1 +(vt +ΔV)sin
(
θ i

t−1 +Δθ/2
)

θ i
t = θ i

t−1 +Δθ
(5)

where Δθ = (ω i
t−1+ΔΩ)Δt, vt and ωt being the translational

and angular control speeds, and ΔV and ΔΩ normally-
distributed random variables that account for the noise in
the motion.

2) Perception Update: In this phase, we incorporate the
information zt = {HT1(It), . . . ,HTn(It)} (the collection of
heatmaps for all objects {T1, . . . ,Tn} for the current image It)
from the camera and weight each sample in St by the weight
wi

t = p(si
t |zt), that represents the likelihood of s i

t given zt .
Finally, we compute the new set S ′

t from the weighted set
using importance resampling [25].

The delicate part is the computation of the weight wi
t . This

is a function of the observed heatmap z i
t , the object map M =

{m j, j = 1..n}, and the particle pose si
t . In particular, we want

wi
t to tell us how well the observed heatmap z i

t matches the
expected heatmap ẑi

t , that is, the heatmap that the particle si
t is

expected to observe from its position. A good measure of the
similarity of two functions is their inner product; therefore,
we use the following expression for wi

t (from now on, we
omit the subscript t to simplify the notation):

wi =
n

∑
j=1

< zi
j, ẑ

i
j > (6)

where the subscript j denotes a specific object category. As
observed, the weight of each particle is a sum of the inner
products between the observed and the expected heatmap of
each object.

Remember that the heatmap of an object is a two dimen-
sional function of the image coordinates. However, since
we consider planar motion it is reasonable to convert the
heatmap into a one-dimensional signal that depends only on
the azimuthal angle δ . Since our camera is calibrated and
approximately perpendicular to the soil, we do this 2D-to-
1D conversion by simply taking the maximum along each
column of the heatmap image. Like the 2D heatmap, also the
1D heatmap assumes values in the range [0...1]. An example
1D heatmap is shown in Fig. 3e for the case of the clock
template in Fig. 4.

The expected heatmap ẑi
j for a given particle si and for a

specific object category j is computed as

ẑi
j(δ ) = max

α
Φ(α)exp

⎛
⎜⎝−

(
δ − δ̂ i

jα

)2

2σ 2

⎞
⎟⎠ (7)

where α denotes a particular instance of the same object
category j and δ̂ i

jα is the view angle of the object in the
particle’s reference frame. Φ(α) is 1 if the instance is within
the visibility range (20m) and 0 otherwise. We used the same
σ for every object, regardless of its distance to the particle.
Also, we use the max(·) instead of the ∑(·) operator so that
if two instances are occluding each other their heatmaps do
not sum up.

V. EXPERIMENTS

We captured the dataset for our experiments in the major
urban train station of Philadelphia. The dataset consists of 20
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Fig. 3: (a) original 360◦ panoramic image. (b) HOGE
heatmap. (c) HQC heatmap. (d) The final heatmap is com-
puted as point-wise product between the HOGE and the HQC
heatmaps. (e) One-dimensional heatmap. These heatmaps
were computed for the clock. Notice the well distinguishable
peaks in the heatmaps in correspondence of the clock.

thousand omnidirectional images (360-degree field of view)
captured using a PointGrey Ladybug 3 camera. The unit
consists of six cameras mounted in a hemi-sphere with five
cameras in a circle and the sixth camera pointing upwards.
In this work we consider only images from the five sideways
cameras. Therefore, our total image set consists of 100
thousand images. The camera was mounted on a differential-
drive robot and driven around the environment.

The train station is a large indoor environment containing
both large open spaces and small spaces, such as hallways,
shops, restaurants, and booths. Being primarily a pedestrian
environment, our motion was unconstrained. We were able to
traverse portions of the station multiple times, approaching
previously visited locations from different and opposite di-
rections. This is in contrast to data captured with an outdoor
vehicular setup which is often restricted to retracing its path,
visiting previous locations with identical trajectories.

Since our focus is localization in large open indoor spaces,
we restricted ourselves to the station’s main hall. This room

is 88 by 41 meters and 29m high. About 40 percent of the
image data, around 8,000 views, were captured within this
area. We sample these at a rate of 1-in-10 resulting in a
final video sequence of 791 views (resulting in an image
approximately every 2m).

A. Object Detection

For the purposes of localization, the map of the environ-
ment needs to be populated with the locations of the objects.
As such, we selected objects present in the environment that
are either permanent fixtures (clocks, payphones) or that are
unlikely to move significant distances (trashcans). The final
set of objects we employed are: trashcan, clock, payphone,
ticket machine.

Each object template is constructed by a single object
exemplar. We compute both histograms of oriented energies,
and histograms of quantized colors and use the resulting
product to perform detection.

Object detection in this setting is especially challenging
due to the method the images were captured. The fact that
the camera was moving precluded high-quality capture of
images from the lateral cameras due to motion blur (Fig. 1).
Additionally, this motion also prevented objects from being
clearly centered in the camera images (Fig. 1), a condition
that is commonly assumed in traditional object recognition
to facilitate detection.

We manually selected a single example for each object
category. Employing a single positive example eliminates the
need for extensive labeling and training that is common with
most approaches [26], [19]. This results in a simpler detec-
tor with almost no offline pre-preprocessing. The primary
disadvantage is complete lack of generalization, or ability
to handle intra-class variation.3 Although the ability of an
object detector to handle intra-class variation is critical for
the general task of object detection, it is not a necessity for
the localization problem.

Of the categories chosen, the clock has the most peaky
heatmaps. It’s distinctive color, white, and very clear bound-
ary combine to yield isolated hot spots (Fig. 4 top row). The
ticket machines (Fig. 4 second row) are generally installed
in groups; this confused the HQC feature creating “warmer”
regions around the objects. Note however that clearly dis-
tinct red “hot” spots appear centered on the machines. The
detections for the trashcan are somewhat weaker (Fig. 4
bottom row) with lukewarm peaks in the heatmaps. These
are caused by occlusions, transparencies, and perspective.
In some cases, the trashcan is partially obscured, lowering
the match scores. Furthermore, we do not take into account
the transparency of the plastic bag that covers most of the
trashcan template. As such, both objects behind the trashcan
(Fig. 2c) and its content adversely affect the matching,
especially with respect to color histograms. Furthermore, a
distinct disadvantage of our single-exemplar object model is
its inability to recognize the trashcan when viewed from a

3Intra-class variation is the variation in appearance between two object
instances belonging to the same object category, e.g. two ATMs of different
banks.
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Fig. 4: Detection results, with the object template in the first column and resulting heatmaps in the remaining columns. Hot
spots, orange to red, indicate increased object presence (Best viewed in color).

different perspective. This shortcoming could be addressed
by adding multiple templates for multiple views of each
object. This would indeed increase performance but also
the time required to detect objects, and require finding
and extracting multiple exemplars for each object to cover
multitude angles. However, a full coverage of each object is
not necessary. Our histogram based approach is still able to
detect the presence of the trashcan even when flipped with a
single exemplar. By taking advantage of partial symmetry
in the objects, we can compute heatmaps using flipped
templates and select the maximal response from the original
and mirrored templates.

Other considerations that lead to reduced detection per-
formance include extreme lighting, low resolution imagery,
and scene clutter. Although the desired object is clearly
visible (Fig. 5a), a combination of low resolution and lighting
change yield a low match score resulting in a cold spot. On
the other hand, the alignment of a person with dark clothing
with a white advertisement creates the hallucination of a
ticket machine (Fig. 5b).

B. Localization

Getting accurate ground-truth data in an indoor setting is
a challenging problem in itself. Key frames in the video se-
quence were annotated with their ground truth position infor-

Clock

(a)

Fake Ticket Machine

(b)

Fig. 5: Some detection failures: (a) Missed object, resulting
in a cold spot. (b) Hot area resulting from object hallucina-
tions.

mation during collection on a simplified building schematic.
These were then used to interpolate position information for
all remaining images.

In order to use objects for localization, we manually
annotated a map of the train station with the locations of
the objects. Objects were treated as points, covering no area.



Fig. 8: Creating a Hard Detector: Original heatmap (blue),
with fixed thresholding and non-maxima supression (green)
resulting in a binary signal (red).

This did not greatly affect localization results, as the objects
in question all have small footprints.

The map of the station with the object is showcased in
Fig. 6a. The red line indicates the hand-labeled ground-truth
camera trajectory, with the green star denoting the current
ground-truth position. We use 10,000 particles, denoted with
red dots. Note how the uniform particle cloud coalesces into
clusters (Fig. 6b). Multiple instances of each object category
creates ambiguity generating multiple location hypotheses
(Fig. 6c). Eventually, enough objects are observed that the
system focuses around the true location (Fig. 6d).

To demonstrate the advantages of soft object detectors we
also perform localization using a “hardened” version of our
detector. In order to generate traditional bounding boxes from
our soft detector, we threshold the projected heatmaps (Fig.
8 blue) with a fixed threshold (chosen appropriately for each
object category). Then non-maxima supression is applied to
find local maxima in the response map; these determine
the positive detections (Fig. 8 green). Each local maxima
represents a positively detected bounding box, with a fixed
width. The final signal fed into the localizer is a binary one-
dimensional heatmap with value 1 in the direction where
there exists a positive detection, and 0 elsewhere (Fig. 8
red).

The use of a more traditional hard detector has a strong
clustering effect on the particles. Starting even at one it-
eration (Fig. 7a) the particles are noticeibly less spread out.
Although this provides increased confidence in the computed
position with smaller, tighter clusters, it is more susceptible
to incorrect detections, in the end failing to correctly localize
the camera (Fig. 7d).

The ability of soft detections to include weak signals
prevents from over-committing to an incorrect localization.
This comes at the cost of larger uncertainty in the positioning
leading to larger particle clusters. One could argue that
a similar effect could be achieved by inserting random
particles at each iteration of the localization process, adding
random noise. Our system takes a more systematic approach,
incorporating the uncertainty at the source of the detection
(where it originates) rather that in the processing.

VI. CONCLUSIONS AND FUTURE WORK

We showed it is possible to localize in a challenging indoor
environment using only objects from images. Our approach
is composed of a simple object detector and a particle
filter approach to localization. Instead of trying to tackle
the object detection problem as a separate component, we
instead tailored our approach to the task of localization. The

resulting object detection scheme relies on soft detections
using object response maps, or heatmaps. By employing
a simple soft detection we were able to perform accurate
localization without the need for learning or training.

Currently, the feature parameters—support region size (for
both HOGE and HQC), the ε (for HOGE), and the color
quantization bins k (for HQC)—are manually determined. A
more careful study of these would both increase the quality
of our soft detections—thus, improving the accuracy—and
rate of convergence during localization.

In this work, we focused on two properties of images to
generate heatmaps: gradient energies and colors. Although a
richer library of image features would increase the detector’s
discriminability, it would increase the computational burden.
Additionally, the temporal aspect of sequential input images
is not considered. Devising a method to “track” object
heatmaps through time (as opposed to tracking objects)
would also improve heatmap quality.

The need for a pre-processed map already containing lo-
calized objects is a significant burden on users of this system.
Incorporating a traditional mapping solution is insufficient as
it lacks automatic localization of semantically meaningful
objects. We propose that an enhanced mapping solution
can be developed by incorporating soft detections. Soft
detection, unlike traditional object detection frameworks, is
built specifically to tackle the challenges of localization and
associated imagery.
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