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Abstract

Neural Radiance Fields (NeRFs) have shown great po-
tential in novel view synthesis. However, they struggle to
render sharp images when the data used for training is af-
fected by motion blur. On the other hand, event cameras ex-
cel in dynamic scenes as they measure brightness changes
with microsecond resolution and are thus only marginally
affected by blur. Recent methods attempt to enhance NeRF
reconstructions under camera motion by fusing frames and
events. However, they face challenges in recovering accu-
rate color content or constrain the NeRF to a set of pre-
defined camera poses, harming reconstruction quality in
challenging conditions. This paper proposes a novel for-
mulation addressing these issues by leveraging both model-
and learning-based modules. We explicitly model the blur
formation process, exploiting the event double integral as
an additional model-based prior. Additionally, we model
the event-pixel response using an end-to-end learnable re-
sponse function, allowing our method to adapt to non-
idealities in the real event-camera sensor. We show, on
synthetic and real data, that the proposed approach outper-
forms existing deblur NeRFs that use only frames as well
as those that combine frames and events by +6.13dB and
+2.48dB, respectively.

Multimedial Material: For videos, datasets and code visit
https://github.com/uzh-rpg/evdeblurnerf.

1. Introduction

Neural Radiance Fields (NeRFs) [27] have completely rev-
olutionized the field of 3D reconstruction and novel view
synthesis, achieving unprecedented levels of details [2, 3,
44]. As a result, they have quickly found applications in
many subfields of computer vision and robotics, such as
pose estimation and navigation [37, 54, 60], image process-
ing [12, 24, 28, 48], scene understanding [17, 22, 52], sur-
face reconstruction [1, 49, 55], and many others.
Leveraging multi-view consistency from calibrated im-
ages, NeRF exploits supervision from multiple view-points,
enabling generalization to novel camera poses and the abil-
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Figure 1. Ev-DeblurNeRF combines blurry images and events to
recover sharp NeRFs. A motion-aware NeRF recovers camera mo-
tion and a learnable event camera response function models real
camera’s non-idealities, enabling high-quality reconstructions.

ity to render view-dependent color effects [44]. However,
akin to other methods relying on photometric consistency,
NeRF can only deliver high-quality reconstructions when
the images used for training are perfectly captured and free
from any artifact. Unfortunately, perfect conditions are sel-
dom met in the real world.

For example, in robotics, camera motion is prevalent
when capturing images, often resulting in motion blur. Un-
der such conditions, NeRFs are unable to reconstruct sharp
radiance fields, thereby impeding their practical use in real-
world scenes. Although recent works [6, 18, 24, 50] have
shown promising results in reconstructing radiance fields
from motion-blurred images by learning to infer the cam-
era motion during the exposure time, the task of recover-
ing motion-deblurred NeRFs still remains significantly ill-
posed. Existing image-based approaches typically fail when
training images exhibit similar and consistent motion [24],
and they are inherently limited by the presence of motion
ambiguities and loss of texture details that cannot be recov-
ered from blurry images alone.

In this regard, recent works have shown that event-based
cameras can substantially aid the task of deblurring images
captured with standard cameras [34, 38, 46, 57]. These
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sensors measure brightness changes at microseconds reso-
lution and are practically unaffected by motion blur [11],
thus directly addressing the aforementioned ambiguities.
Motivated by these advantages, the literature has recently
looked into the possibility of recovering NeRFs from events
[4, 13, 16, 31, 33]. While most of the literature [4, 13, 33]
focuses on event-only NeRFs, only two prior works [16, 31]
investigate fusing motion-blurred images with events. E-
NeRF [16] decouples sharpness and color recovery but
struggles at recovering accurate color content, as the ren-
dered images still exhibit blurred colors around sharp edges.
E2NeRF [31], on the other hand, proposes to model the
camera motion by combining structure from motion with an
event-aided model-based deblurring process. While effec-
tive, event supervision is only applied during the exposure
time, thus potentially limiting performance under challeng-
ing motion conditions.

In this work, depicted in Fig. 1, we propose Ev-
DeblurNeRF, a novel event-based deblur NeRF formulation
combining learning and model-based components. Inspired
by E-NeRF [16], it exploits continuous event-by-event su-
pervision to recover sharp radiance fields. But it departs
from E-NeRF in that it models the blur formation process
explicitely, exploiting the direct relationship between events
triggered during the exposure time and the resulting blurred
frames, i.e., the so-called Event Double Integral (EDI) [29].
Unlike E?NeRF [31], our approach employs this relation as
additional training supervision, adding an end-to-end learn-
able camera response function that enables the NeRF to di-
verge from the model-based solution whenever inaccurate,
resulting in higher-quality reconstructions.

We validate Ev-DeblurNeRF on a novel event-based ver-
sion of the Deblur-NeRF [24] synthetic dataset, as well as
on a new dataset we collected using a Color DAVIS event-
based camera [19]. We show that Ev-DeblurNeRF recovers
radiance fields that are +6.13dB more accurate than image-
only baselines, and +2.48dB more accurate than NeRFs ex-
ploiting both images and events on real data. To summarize,
our contributions are:

* A novel approach for recovering a sharp NeRF in the
presence of motion blur, incorporating both model-based
priors and novel learning-based modules.

* A NeRF formulation that is +2.48dB more accurate and
6.9x faster to train than previous event-based deblur
NeRF methods.

* Two new datasets, one simulated and one collected using
a Color-DAVIS346 [19] event camera, featuring precise
ground truth poses for accurate quality assessment.

2. Related Works

Neural Radiance Fields (NeRFs) NeRFs [27] have gained
widespread attention in the research community due to their

impressive performance in generating high-quality images
from novel viewpoints [8, 40]. As aresult, ongoing research
is constantly broadening NeRFs range of capabilities, ex-
tending their use even under unideal settings. Among these,
recent works have tackled the problem of recovering sharp
neural radiance fields from blurry images. Deblur-NeRF
[24] proposes to simultaneously learn the latent sharp radi-
ance field and a view-dependent blurring kernel, using only
blurry images as input. PDRF [6] further extends the ap-
proach by employing a coarse-to-fine architecture that ex-
ploits additional scene features to guide the blur estimation
and speed up convergence, while DP-NeRF [18] improves
the motion estimation by imposing rigid motion constraints
on all pixels. An alternative approach is BAD-NeRF [50],
which directly recovers the camera trajectory within the ex-
posure time, taking inspiration from bundle-adjusted NeRF
[21]. Despite impressive results, these methods often fail in
the presence of severe camera motion or when the training
views share similar motion trajectories, challenging their
use with in-the-wild recordings. Our approach has a similar
backbone architecture but, crucially, it additionally lever-
ages the advantages of event-based cameras to help the re-
construction of sharp NeRFs. This allows us to recover tex-
ture and fine-grained details, resulting in improved perfor-
mance and higher-quality reconstructions, even in the pres-
ence of challenging motion.

Event-based image deblurring In recent years, event-
based cameras have become increasingly popular in the
field of computational photography [9, 25, 41, 42, 51] due
to their high dynamic range and temporal resolution. Sev-
eral methods have been proposed to exploit the unique char-
acteristics of event cameras for image deblurring, starting
from model-based methods, such as the event-based dou-
ble integral (EDI), which explicitly model the relationship
between events triggered during the exposure time and the
resulting blurry frame [29, 29]. Subsequent works build
on these approaches by refining predictions with learning-
based modules [ 14, 47] or directly learning to deblur the im-
age by fusing events and frames [10, 38, 39, 53, 58]. These
networks often pair the deblurring task with that of frame
interpolation [10, 39], or make use of attention-based mod-
ules to further improve quality [38].

Recently, event-based cameras have also been used to
recover sharp images from a fast-moving camera by lever-
aging an implicit NeRF model of the scene. Ev-NeRF [13],
later improved in Robust e-NeRF [23], exploits the event
generation model [7] to recover the underlying scene bright-
ness, while EventNeRF [33] extends this approach by in-
corporating color event-cameras. Recent methods [16, 31]
have also explored combining event-based cameras with
motion-blurred images. E-NeRF [16] shows that incorpo-
rating an event supervision loss can enhance the recovery
of sharp edges, but it struggles to restore sharp colors due to



the lack of explicit blur modeling. Similar to ours, E2NeRF
[31] follows Deblur-NeRF [24] by modeling the camera
motion during the exposure time. Notably, in our approach,
we exploit continuous event-by-event supervision and em-
ploy a novel learnable camera response function that better
adapts to real data, resulting in improved reconstruction un-
der fast motion.

3. Method

The proposed Ev-DeblurNeRF aims to recover a latent
sharp representation of the scene given a sequence of times-
tamped blurry colored images {(CP"",#;)}¥", and events
& = {e; = (uj,t;,p)) j-V:El, specifying that either an in-
crease or decrease in brightness (as indicated by the po-
larity p; € {—1,1}) has been detected at a certain time
instant t; and pixel u; = (u;,v;). Our method employs
recent NeRF-based deblurring modules [6, 18] for fast con-
vergence and adapts them to effectively exploit event-based
information. Events in our approach serve a threefold pur-
pose: (i) as sharp brightness supervision obtained through a
single integral loss [7, 13, 16, 33], (ii) as prior, in the form
of the Double Integral (EDI) [29], and lastly (iii) as a learn-
able event-based camera response function (CRF) that en-
ables adapting to real event-based data. Fig. 2 provides an
overview of our proposed method. In the following section,
we introduce the basics of event integrals, while in Sec. 3.2
we describe the building blocks of our network.

3.1. Preliminaries

Event-based Single Integral. Let’s denote the instanta-
neous intensity at a monochrome pixel u on a given time
t as I(u,t). An event e; indicates that at time ¢;, the
logarithmic brightness measured at the pixel location has
changed by p; - ©,,, from the last time ¢;_; an event has
been generated from the same pixel location. The quantity
O,, € R is a predefined threshold that controls the sensi-
tivity to brightness changes. It follows that:

log(I(u,t;))—log(I(u,t;—1)) = AL(tj_1,t;) = p;-Op,.

(D

Considering the events collected in a time period At and

denoting as L(u,t) = log(I(u,t)) the logarithmic inten-

sity, the following relation, here called Event-based Single
Integral (ESI), holds:

t+At
Lt+ At — L(t) =0 -B(t) = © / po(r)dr, )

where we dropped the dependency from the pixel location
and the polarity p; in the threshold © for readability, with
d(7) an impulse function with unit integral. Besides pro-
viding a relation between the difference in instantaneous
brightness perceived at two instants and the events cap-
tured in between, Equation (4), rewritten as I(t + At) =

I(t) - exp(© - E(t)), also introduces a way of warping the
instantaneous brightness forward or backward in time using
the accumulated brightness © - E(t) measured by the event
camera. This relation is utilized in the following.

Event-based Double Integral. Let’s now recall that the
physical image formation process of a standard frame-based
camera can be mathematically represented as integrating a
sequence of latent sharp images acquired during a fixed ex-
posure time 7:

blur 1 /2
" (u,t) = — I(u, h)dh, 3)

T Jt—7/2

where IP" is the captured image, which we consider af-
fected by motion blur.

Following [29], by combining Equation (4) with (3), we
can finally draw a connection between the blurred image
observed at time ¢, the events recorded during the exposure
interval AT = [t — 7/2,t + 7/2] and the underlying latent
sharp image I(u, t) at time ¢:

t+7/2
P, ) = 101 / exp (OE(h)) dh.  (4)
T t—7/2

Solving for I(u,t), we obtain a model-based deblur of T,
guided by the events. In the following, we use this quantity
as a prior to supervise our network during training.

3.2. Event-Aided Deblur-NeRF

Our architecture takes inspiration from prior works [6, 18,
24], and is depicted in Figure 2. We aim to recover the
scene as a radiance field, implemented by an MLP Fq,
blindly, by directly modeling the blur formation process at
each exposure. Analogous to Equation (3), a blurry color
observation generated by the ray r(u,t;) cast by pixel u
during its exposure can be described as the integral of the
sharp colors observed by the ray in a time interval AT; =
[ti —T/Q,ti —|—T/2}.

Similarly to [18], we learn to estimate the motion of each
ray implicitly using a neural module G&. We discretize
motion in a finite set of M observations and learn an SFE(3)
field that rigidly warps pixel rays to each position ¢:

(erq’tqawq) = G‘P(R(li)§T(li)§W(li))a )

where I € R¥ is a shared learned image embedding, and R,
T and W are independent MLPs that predict, respectively,
a set of rotation matrices e;, € SO(3), translation vectors
t, € R3, and view weights w, € R, one for each discrete
position q. The warped rays can thus be finally obtained as
P, = e r(u,t;) + tg.

Following NeRF [8], we render the color at each ray by
first sampling a set of 3D points along each ray, and then
query a pair of MLPs, one coarse- and one fine-grained, I§
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Figure 2. Architecture of the proposed Ev-DeblurNeRF model. For each given ray r(u, ), placed at the center of the exposure time 7, we
estimate a set of warped rays r, using Ge. We then sample features from an explicit volume V and fed these features to Fo, to compute
blurry colors through weighted averaging with Ly, We supervise the color at the center of the exposure time through £ pr by recovering
a prior-based sharp color using the event double integral, considering all events in the exposure time. Finally, we sample a pair of two
consecutive events, and supervise their brightness difference, modulated by eCRF, using the observed polarity value via Le, .

and Fé, to obtain colors and density at each location. Vol-
umetric rendering is then finally used to estimate colors Cq
at the predicted camera positions, which are finally fused
into a blurry observation

CP (r(u, t;)) = i) C
yli)) =g Z Wqoq | (6)
q=1

where ¢(+) is a gamma correction function. Inspired by [18],
we further refine the composite weights using an adaptive
weight proposal network A\, = AWP((,,l;,d,), which
takes the ray’s samples features (,, directions d, and im-
age embedding 1; to produce refined weights. We use these
refined weights in Equation (6) in place of w, to obtain re-
fined colors CP,

The thus rendered synthetic blurry pixel is finally super-
vised with a ground truth observation Cy through:

B (G = [ — ) ™
Lo = > E'(CU) + E°(C) + BN, ®
reRy

where we consider a batch of pixels Ry, and rewrite C2" =
CPlur(y), Subscripts ¢ and f indicate if values are obtained
through F§ or Fé, while ~ if adaptive weights are used.

Event-based supervision via learned event-CRF. When
the scene is also captured by an event-based camera, as in
our case, blur-free microsecond-level measurements can be
exploited to further assist the reconstruction of a sharp radi-
ance field, leveraging the relation in Equation (1) between

brightness and generated events. We do so by synthesizing
the left-hand side of (1), i.e., the log brightness difference
perceived by the event pixel, through volumetric rendering
while we take the right-hand side as a ground truth supervi-
sion, given recorded event pairs.

In particular, we estimate the log-brightness at each
event e;, produced by the event pixel u at time ¢}, as:

L(tj,u) = log(h(eCRFy(C(r;), p;))), ©)

where we obtain C(rj) via volumetric rendering [27] by
rendering the ray r; = r(u,t;) cast from the camera pose
T(t;) € SE(3), approximated via spherical linear inter-
polation [35] of the available known camera poses. Here,
eC' RFy is an MLP that produces a modulated signal C.e
R3 from the rendered color C and the polarity p;, while
h(-) is a luma conversion function, implemented following
the BT.601 [43] standard.

Given a pair of consecutive events at time ¢;_; and ¢;, we
first estimate the log-brightness difference as AL(u, tj) =
L(u,tj) — L(u,t;_,) and then compare it with that ob-
served by the event camera, AL, as follows:

~ ~ 2
ES(ALL) = HALg ~ALL
2

(10)

Lo = g SOES(ALL )+ ES(ALL )+ ES(ALL ), (1)
(t,u)eU,

where we use the compact form L, for L(t,u), and apply
the supervision on fine and coarse levels, as well as on adap-
tively refined colors. U, selects pairs of pixels u and times-
tamps ¢ corresponding to received events. Our experiments



reveal that applying L., not only during image exposures
but also between frames, similar to [16], helps in viewpoints
with scarce RGB coverage, as common with fast motion.
In Equation (11), we assume the ideal event generation
model of (2). However, real event pixels deviate from the
ideal case [11]. Our proposed event CRF function eC RFy
learns to compensate for potential mismatches between the
ideal model and that of the camera at hand, filling the gap
between the rendered color space and the brightness change
perceived by the event sensor. Note that, when a color event
camera is used, as the one in [19], pixels record color inten-
sity changes following a Bayer pattern. We remove the luma
conversion A(-) function in Equation (9), and directly apply
the previous loss to the color channel each pixel is respon-
sible for. We refer to this version of the loss as Ley-color-

Double integral supervision. The eCRF just introduced
provides an effective way of handling unmodeled event
pixel behaviors. However, blindly recovering the event
camera response to colors is not trivial since the only di-
rect source of color supervision comes from Equation (8).
In practice, the optimization problem in (11) is under con-
strained, as the loss, acting on the event CREF, is free to en-
hance texture details in the radiance field as long as they cor-
rectly render once blurred through Equation (3). Inspired
by recent works [20], which suggest facilitating NeRF op-
timization through priors, we propose here to exploit the
relationship in (4) to further constrain the NeRF training.

In particular, we consider every original ray r € R,
sampled when optimizing Eq. (8) originating from the
mid-exposure pose of image I, i.e., the rays render-
ing the latent sharp pixels C(r). If we simplify and as-
sume these pixels are monochrome, they correspond to
I(u,t;) in Equation (4). Given this observation, we first
rewrite (4) by solving for I(u,t;), and then evaluate it
channel-wise for the given image at time ¢; and ray r, us-
ing the observed blurry color C"'" and the events received
at pixel u. We finally collect channels into CEP! =
[T%(w,t;), 19w, t;), 15 (u,t;)], obtaining a model-based
sharp latent color. We use this color as a prior in:

EEPNE,) = HC _ CEDIH2 (12)
r r vl

Lipt = =z » E*N(Ce) + EPPN(C,,)  (13)
reRy

Fast NeRF via explicit features. The additional event-
based supervision introduced in Equation (11), while en-
abling the reconstruction of a high-fidelity sharp NeRF,
does come with a notable effect on the training time. In-
deed, on top of the rays R;, needed for optimizing Equa-
tions (8) and (13), we also consider an additional pair of
rays in U, which we employ to render brightness changes
across time. We overcome this aspect by taking inspiration

from previous works [5, 6] showing that additional explicit
features can ease convergence, making the training faster.

Inspired by the hybrid design in [6], we enhance the ca-
pabilities of F5 and FS’; by incorporating dedicated Ten-
soRF [5] volumes, which we employ as additional input
feature spaces for the MLPs. In particular, given a ray ry
and a set of coarse and fine points {x§}5_, and {x]}5_,
along the ray, we first sample feature volumes:

Fof = Vu(x5), fol =Vi(x]),
[ =Vix5), fif =),

with Vs and V), respectively, a small and a large TensoRF
[5] volume. We use f,; as additional features in F, while
we employ all the features as input to the fine-grained MLP
Fé The structure of F§ and FSJ; is analogous to that of the
original NeRF [27], with the only difference that the MLP
predicting o also takes these extra features as input.

(14)

4. Experiments

4.1. Implementation Details.

Training. We build our event-based architecture starting
from the Pytorch implementation of DP-NeRF [18]. We use
a batch size of 1024 for rays R, and 2048 for rays U/, and
sample 64 coarse and additional 64 fine points along each
ray. Following [6], we set the number of motion locations to
M = 9. We use Adam [15] to optimize the multi-objective
loss £ = A\ Lpjur + AeLevent + A1 LEDI, Where we set
X = Lgpr = 1, and A\, = 0.1. We train the model for
a total of 30, 000 iterations, using an initial learning rate of
51073, which we decrease exponentially to 5 - 10~% over
the course of the training. Further details on the network
architectures are provided in the supplementary material.

Ev-DeblurBlender dataset. We evaluate our method on
four synthetic scenes derived from the original DeblurN-
eRF [24] work, namely, factory, pool, tanabata, and trol-
ley. We exclude cozy room from our conversion as the
Blender rendering for this scene relies on an image de-
noising post-processing step. This step causes the rendered
images to show temporally inconsistent artifacts when ren-
dered at high FPS, thereby causing unrealistic event simu-
lation. Differently from [24], where blurry images are ob-
tained by randomly moving the camera at each pose, we
use a single fast continuous motion, derived from DeblurN-
eRF’s original poses, lasting around 1s. We simulate a 40ms
exposure time by averaging together, in linear RGB space,
images rendered at 1000 FPS. We then use the same set of
images to generate synthetic events using event simulation
[32], making use of a balanced © = 0.2 event threshold and
monochrome events.

Ev-DeblurCDAVIS dataset. Given the lack of real-
world datasets for event-based NeRF deblur that incorpo-



Table 1. Quantitative comparison on the synthetic Ev-DeblurBlender dataset. Best results are reported in bold.

FACTORY PooL TANABATA TROLLEY AVERAGE

PSNRt LPIPS| SSIMt | PSNRtT LPIPS| SSIM? | PSNRT LPIPS| SSIMt | PSNRT LPIPS| SSIMt | PSNRT LPIPS | SSIM?
DeblurNeRF [24] 24.52 0.25 0.79 26.02 0.34 0.69 21.38 0.28 0.71 23.58 0.22 0.79 23.87 0.27 0.74
BAD-NeRF [50] 21.20 0.22 0.64 27.13 0.23 0.70 20.89 0.25 0.65 22.76 0.18 0.73 22.99 0.22 0.68
PDREF [6] 27.34 0.17 0.87 27.46 0.32 0.72 24.27 0.20 0.81 26.09 0.15 0.86 26.29 0.21 0.81
DP-NeRF [18] 26.77 0.20 0.85 29.58 0.24 0.79 27.32 0.11 0.85 27.04 0.14 0.87 27.68 0.17 0.84
MPRNet [56] + NeRF 19.09 0.37 0.56 25.49 0.39 0.64 17.79 0.42 0.51 19.82 0.31 0.62 20.55 0.37 0.58
PVDNet [36] + NeRF 22.50 0.29 0.71 23.89 0.43 0.52 20.26 0.33 0.64 22.49 0.25 0.74 22.28 0.32 0.65
EFNet [38] + NeRF 20.91 0.32 0.63 27.03 0.31 0.73 20.68 0.31 0.64 21.69 0.25 0.69 22.58 0.30 0.67
EFNet* [38] + NeRF 29.01 0.14 0.87 29.77 0.18 0.80 27.76 0.11 0.87 29.40 0.94 0.89 28.99 0.34 0.86
ENeRF [16] 22.46 0.19 0.79 25.51 0.28 0.72 2297 0.16 0.83 21.07 0.20 0.80 23.00 0.21 0.79
E?NeRF [31] 24.90 0.17 0.78 29.57 0.18 0.78 23.06 0.19 0.74 26.49 0.10 0.85 26.00 0.16 0.78
(Ours) Ev-DeblurNeRF-- | 32.84 0.05 0.94 31.45 0.14 0.84 29.20 0.06 0.92 30.60 0.06 0.93 31.02 0.08 0.91
(Ours) Ev-DeblurNeRF 31.79 0.06 0.93 31.51 0.14 0.84 28.67 0.08 0.90 29.72 0.07 0.92 30.42 0.08 0.90

Table 2. Quantitative comparison on the real-world Ev-DeblurCDAVIS dataset. Best results are reported in bold.

BATTERIES
PSNR? LPIPS| SSIM?t

POWER SUPPLIES
PSNRT LPIPS| SSIMt

LAB EQUIPMENT
PSNR? LPIPS] SSIM?t

DRONES
PSNRf LPIPS| SSIMt

FIGURES
PSNR? LPIPS] SSIM?t

AVERAGE
PSNRf LPIPS| SSIMt

DP-NeRF [18] + TensoRF [5]| 26.64 027 0.81 | 2574 032 0.77 | 2749 031 080 |2652 030 081 [27.76 034 077 | 2683 031 0.79
EDI [29] + NeRF 28.66 0.12 0.87 |28.16 009 088 | 3145 0.3 089 |2937 010 0.88 | 3144 0.2 088 |29.82 0.11 0.88
EZNeRF 30.57 0.12 088 | 2998 0.11 0.87 | 3041 0.16 0.86 | 3041 0.14 0.87 | 31.03 0.14 0.85 | 3048 0.13 0.87

(Ours) Ev-DeblurNeRF 3317 005 092 | 3235 006 091 | 33.01 0.08 091 |3289 005 092 3339 0.07 090 |3296 0.06 091

rate ground truth sharp reference images for quantitative as-
sessment, we introduce a novel dataset composed of 5 real-
world scenes. We use the Color-DAVIS346 [19] camera for
recording, which captures both color events and standard
frames at 346 x 260 pixel resolution using a RGBG Bayer
pattern. We mount the camera on a motor-controlled lin-
ear slider to capture frontal-facing scenes and use the motor
encoder to obtain poses at 100 Hz. We configure the Color-
DAVIS346 with a 100ms exposure time and collect ground
truth still images first, followed by a fast motion. Scenes
feature 11 to 18 blur training views and 5 ground truth sharp
poses with both seen and unseen views.

Baselines. We evaluate our method against frame-only
methods as well as methods fusing both images and events.
For the first category we follow previous works [18, 18, 24],
and select Deblur-NeRF [24], BAD-NeRF [50], DP-NeRF
[18] and PDRF [6] as the most recent NeRF-based base-
lines, as well as single-image and video deblurring meth-
ods, namely MPRNet [56] and PVDNet [36], followed by
NeRF [27]. Similarly, for the second category, we select
E-NeRF [16] and E2-NeRF as event-based deblur NeRF
architectures, and also combine frames deblurred via the
events+frames EFNet [38] network with NeRF [27]. We run
all baselines with default hyperparameters using the official
codebases. We utilize Blender poses in Ev-DeblurBlender
and motor encoder poses in Ev-DeblurCDAVIS for all
baselines, including E2NeRF, where we compute exposure
poses via spherical linear interpolation of the available ones.

4.2. Experimental Validation

Results on Ev-DeblurBlender.  We start the evaluation
on the synthetic Ev-DeblurBlender dataset to first assess the
performance of our method on an ideal case, i.e., where

camera poses are accurate and the event generation model
is close to the ideal case. Results are reported in Table 1.
We test two versions of our network. The first, which we
call Ev-DeblurNeRF- -, does not make use of the proposed
eCRF module and EDI supervision, while the second, Ev-
DeblurNeRF, incorporates the complete architecture pre-
sented in Section 3. We found Ev-DeblurNeRF- - to ex-
hibit slightly superior performance on average on this data.
As discussed in Section 3, indeed, we designed the eCRF
specifically to handle possible variations between RGB and
events’ response functions, as well as to compensate for
mismatches on the event generation model. These issues are
not predominant in simulated data, explaining why adding a
learnable response function does not improve performance.

Despite this, both versions largely outperform all other
baselines, both event-based and frame-based. Compared to
DP-NeRF [18], which uses a similar backbone architecture,
our method achieves on average a +3.34dB higher PSNR,
a 52.9% lower LPIPS [59] and 7.14% higher SSIM, high-
lighting the improvement gained by effectively integrating
event-based supervision. This is also evident when consid-
ering baselines utilizing an image-deblurring stage prior to
NeRF training, which also achieve better performance when
events are used. This is the case of EFNet [38], and its
variant, which we name EFNet*, that we finetune on the
other 3 scenes before deblurring images of a given scene.
Despite the high accuracy, these methods fail to produce
scene-level consistent deblurring, causing the NeRF to re-
construct floaters and thus decreasing novel-view synthesis
performance. Finally, our approach also surpasses both pre-
vious event-based deblurring NeRF methods with an aver-
age increase of +5dB in PSNR, a 50% reduction in LPIPS,
and a 16.7% increase in SSIM. Notably, ENeRF, which does
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Figure 3. Qualitative comparison on synthetic (top) and real-world camera motion blur (bottom). Ev-DeblurNeRF recovers sharp and fine
details, such as the letters in the last example, as well as accurate colors, outperforming other event-based and image-only methods.

not explicitly model the blur formation process, struggles to
recover sharp color information, while E2NeRF, exclusively
employing event supervision during the exposure time, fails
at fully exploiting event-based data. Our method, on the
contrary, overcomes both limitations, showcasing the effec-
tiveness of the proposed approach.

Results on Ev-DeblurCDAVIS. In Table 2, we re-
port results obtained on data collected with a real Color-
DAVIS346 camera. We select the top-performing NeRF
models from the previous evaluation, namely E>NeRF [31]
and DP-NeRF [18], which we modify here by integrating
the TensoRF modules discussed in Section 3 for a bet-
ter comparison. Additionally, we include the performance
metrics obtained by initially deblurring images using the
model-based EDI deblur method, followed by NeRF. An
extended analysis including all other baselines is provided
in the supplementary materials. Once again, our proposed
approach significantly outperforms all baselines, exhibiting
an improvement of +2.5dB in PSNR and a 4.6% increase
in SSIM. A qualitative comparison, depicted in Figure 3,
illustrates the capability of the proposed Ev-DeblurNeRF
network in reconstructing textures and details, ultimately
resulting in a higher-quality novel view synthesis.

Synthesis from sparse blurry views. Utilizing the same
setup used for collecting the Ev-DeblurCDAVIS dataset, we
study here the robustness of the proposed approach to sparse
supervision to highlight the advantage of using events not
only within exposure but also in between frames. We col-
lect an additional, longer, sequence with a back-and-forth
motion and train the proposed approach with an increasing
number of frames Ny € {5,9,17,33}, such that each set
is a subset of the next and making sure that test poses are
within training views but as furthest away as possible from
them. Results are reported in Figure 4. Remarkably, Ev-
DeblurNeREF attains the highest performance of all methods
we tested, with its performance only decreasing by 3.46dB
in PSNR when passing from 33 to just 5 views. In contrast,
E2NeRF and EDI+NeRF experience a decrease of 13.71dB
and 15dB, respectively. These methods struggle to correctly
reconstruct the radiance field from viewpoints that are only
weakly supervised by blurred images. Our approach, in-
stead, is only marginally affected. More details are provided
in the supplementary material.

Robustness to motion blur. In Figure 4, we analyze how
the performance of the proposed approach changes as we
vary the motion blur intensity. We follow the same setup
as before but this time vary the slider speed from 0.1m/s to
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Figure 4. Analysis of the robustness to sparse training views

(left) and motion blur intensity (right) on samples from the Ev-
DeblurCDAVIS data.

Table 3. Ablation study on Ev-DeblurCDAVIS.

Ves Lew Lov—color Lupr ¢CRF ¢CRF w/p|PSNRT LPIPS| SSIM{
v 2755 026 0.80
v v 2824  0.14  0.85
v v v 2928 0.12  0.85
v v v v 3243 0.10 091
v v v v 3077 0.11  0.86
v v v v 7 3290 007 00l
v v v v v v 3317 007 091

v v VA v 33.03  0.08 091

0.3m/s in increments of 0.05m/s. Notably, Ev-DeblurNeRF
demonstrates superior robustness, achieving a PSNR of
32.01dB at the highest speed. In contrast, E?NeRF and
EDI-NeRF achieve PSNR values of 28.77dB and 27.12dB,
respectively. We attribute the higher performance to our
choice of decoupling event supervision (Eq. (11)) from blur
estimation (Eq. (8)). In contrast to E2NeRF, which fixes the
poses used to render blurry images, we leave the NeRF free
of optimizing the best camera views to consider for blur es-
timation as well as their contribution, thus achieving better
robustness to different degrees of motion.

Ablations. We conclude the evaluation by studying, in
Table 3, the contribution of all the modules introduced in
Section 3, using a scene derived from the Figures sample of
Ev-DeblurCDAVIS. Adding event supervision from Equa-
tion (11) improves PSNR by +0.69dB, which is further in-
creased by +1.04dB when the events’ color channel is con-
sidered. Similarly, adding L p; in Equation 13 as well as
the proposed eCRF module, with and without additional po-
larity features, also results in increased performance. Next,
we study the contribution of adding the Lgp; in Equation
13 and the eCRF module. Performance increases in both
cases, with a +3.15dB increase when adding Lgp; and a
+1.49dB when adding the eCRF. The highest performance
is achieved when both are combined and when the eCRF
also utilizes polarity as input, with an increase of 4-0.74dB,
and an overall improvement of +5.62dB in PSNR with re-
spect to only using images. We finally validate the use V. ¢

on the full configuration. Using explicit features guaran-
tees faster training times without sacrificing performance.
We obtain a slight boost in PSNR and LPIPS but, most no-
tably, a X 10.8 speedup in training convergence. This model
only takes around 3 hours and 30 minutes for training on an
NVIDIA A100 GPU, while the same network without V. ¢
takes around 38 hours on the same hardware, as it requires
more iterations at a lower learning rate. Moreover, in com-
parison to E2NeRF, which takes around 24 hours to train,
our model is 6.9 times faster.

Limitations. We structure the proposed Ev-DeblurNeRF
assuming that events and frames can be recorded from the
same image sensor. While this is possible with the sug-
gested hardware, namely a ColorDAVIS camera, not all
event cameras feature both modalities. While the proposed
Lgpr loss requires pixel alignment to work effectively, we
believe the proposed method could still be applied in more
advanced stereo setups, such as the ones in [25, 42], es-
pecially exploiting the proposed eCRF to compensate for
different sensor responses. Moreover, our method, simi-
lar to [16], estimates event camera poses via interpolation
of available ones. This could lead to a performance de-
crease in case estimated poses are far from actual ones or
they are provided at a low frequency. However, we believe
refinement of camera poses through event-based methods
[26, 45], or a modified approach that only computes Leyent
at known camera views, could help in mitigating this issue.

5. Conclusions

We present Ev-DeblurNeRF, a novel deblur NeRF architec-
ture that fuses blurry frames with events for sharp NeRF
recovery. Our method, exploiting explicit features for fast
training convergence, integrates a learnable event-based
camera response function and ad-hoc event-based super-
vision that facilitates fine-grained details recovery. Ev-
DeblurNeREF, despite being supervised by model-based pri-
ors, can adapt to non-idealities in the camera response, po-
tentially departing from the model-based solution. We val-
idate our method on both synthetic and real data, achiev-
ing an increase of +4.42dB and +2.48dB in PSNR, re-
spectively, when compared to the previous best-performing
event-based baseline, and an increase of +2.74dB and
+6.13dB when compared to the top-performing image-only
baseline.
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Table 4. Extended quantitative comparison on the real-world Ev-DeblurCDAVIS dataset. Best results are reported in bold.

BATTERIES POWER SUPPLIES LAB EQUIPMENT DRONES FIGURES AVERAGE

PSNRT LPIPS| SSIM{ | PSNRT LPIPS| SSIM{ | PSNRT LPIPS, SSIM{ | PSNRT LPIPS| SSIM{ | PSNRT LPIPS| SSIM{ | PSNRt LPIPS, SSIM{
BAD-NeRF* [50] 2732 026 082 | 2642 032 0.9 | 2784 031 081 | 2696 031 081 | 2821 035 077 | 27,5 031 0.80
DP-NeRF [I8] + TensoRF [5] | 26.64 027 081 | 2574 032 077 | 2749 031 080 | 2652 030 081 | 2776 034 077 | 2683 031 0.79
PDREF [6] 2682 025 081 | 2579 031 077 | 2770 031 081 | 2672 029 081 | 27.80 033 077 | 2696 030 079
MPRNet [56] + NeRF 2799 021 083 | 2689 023 078 | 2720 028 080 | 2698 023 080 | 2851 029 0.9 | 2752 025 080
PVDNet [36] + NeRF 2465 030 072 | 2350 030 066 | 2504 032 072 | 2421 031 069 | 2592 033 072 | 2466 031 0.70
EFNet [38] + NeRF 2985 013 088 | 2910 013 087 | 3028 018 088 | 2972 014 088 | 3062 017 085 | 2991 015 087
EDI [29] + NeRF 2866 012 087 | 2816 009 088 | 3145 013 089 | 2937 010 088 | 3144 042 088 | 2982 0.1 0.88
ENeRF [16] 2785 026 073 | 2791 021 076 | 2779 025 073 | 2828 025 077 | 2905 018 077 | 2817 023 0.75
E2NeRF [31] 3057 002 088 | 2998  0.11 087 | 3041 016 086 | 3041 014 087 | 3103 014 085 | 3048 0.3 087
(Ours) Ev-DeblurNeRF 3317 005 092 | 3235 006 091 | 3301 008 091 | 3280 005 092 | 3339 007 090 | 329 006 091

[Vai Leveo Lept €CRE eCRF wip|PSNR| Vi Leveol Lepi €CRE eCRE wip|PSNR| |Vt Leveol Lot eCRF eCRE wip|PSNR| |V, £ LLLLL col Cpm r(RI_ eCRF wip| PSNR |
v - - - s [V - ™8| [V v - 7 — 3077 [ 7 B Ground Truth

Figure 5. Qualitative ablation study of the main components of the proposed Ev-DeblurNeRF network. Tables below each picture are
drawn from Table 3 of the paper, and report the configuration used and the PSNR metric achieved in each case.

A. Implementation Details sign to be easier to optimize and yield overall better results.
. . o We follow [18] to implement the refinement AW P module
Training. We implement Ev-DeblurNeRF building upon and employ the coarse-to-fine scheduling strategy to weight

the DP-NeRF [18] official codebase implemented in Py- Cbur and CO in £y, However, we weigh their contribu-
Torch [30], and incorporating additiongl features from tion equally in L., through the whole training, as we found
PDRF [6] and TensoRF [5]. We train both our Ev- the coarse-to-fine scheduling strategy not to improve the re-
DeblurNeRF network and the baselines on full-resolution sults. We implement FS as a 2-layers MLP with ReLU acti-

images using either an NVIDIA V100, an NVIDIA RTX vation, hidden dimension 64, and output dimension 16, fol-
A6000, or an NVIDIA A100 GPU. In particular, we use lowed by a 3-layers MLP with the same activation and hid-
600 x 400 images for Ev-DeblurBlender and 346 x 260 for den dimension, but output dimension 3. We use one of the
Ev-DeblurCDAVIS. Similar to [6, 18, 24], we warm up the output channels of the first MLP as the predicted density,
training for the first 1, 200 iterations, by using at first only while the rest is used by the second MLP to predict col-

the Lppr and L.y losses and without utilizing the eCRF ors. The structure of Fy is analogous, but we use an output
module. Subsequently, we introduce Ly, along with the dimension of 128 for the first MLP and a 256 hidden dimen-
proposed eC' RF’, which we initialize as the identity func- sion for both MLPs. We implement V, and V; with vector-
tion, and the blur estimation module Gg, keeping the A pa- matrix decomposition [5], using 16.7 million voxels in V
rameters (A, = Appr = 1, and A, = 0.1) fixed for the and 134.2 million voxels in V), and setting to {64, 16,16}
entire duration of the training. To implement Lgpy, we the channel dimensions of the decomposed {X,Y, Z} axes
pre-compute Cfpp; images using Eq. (4) and directly sam- in both V; and V. The proposed Ev-DeblurNeRF architec-
ple them during training. When using the Ley-color l0ss, we ture trains in around 3 hours and 30 minutes on an NVIDIA

weigh the events’ contributions by 0.4, 0.2, or 0.4 depend- A100 GPU.
ing on whether the event corresponds to a red, green, or
blue channel, as green pixels appear twice as often in an
RGBG Bayer pattern. We use symmetric constant thresh-
olds for the events, setting © = 0.2 for synthetic events,
and © = 0.25 when using a real camera.

B. Extended Analysis on Ev-DeblurCDAVIS

State-of-the-art comparison. Section 4.2 of the paper
provides an analysis on the Ev-DeblurCDAVIS dataset fo-

Architecture. The motion estimation module G is imple- cused on the top-performing architectures selected from the
mented following DP-NeRF [ 18] hyperparameters’ choice, synthetic evaluation. For completeness, we report in Ta-
and using M = 9 exposure poses. Differently from [18], ble 4 of this supplementary material a comprehensive eval-
we implement the image embedding /; using a simple set of vation against all other baselines used in the paper. The
learnable 32-dimensional parameters, instead of predicting trend follows that of the synthetic analysis, with image-only

them through an additional 4-layers MLP. We found this de- baselines performing worse than networks making use of
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Figure 7. Analysis on the robustness to model mismatches.

Table 5. Extended study on motor encoder’s vs. COLMAP’s poses on Ev-DeblurCDAVIS. Best results in bold, second-best underlined.

Train  Test-time BATTERIES POWER SUPPLIES LAB EQUIPMENT DRONES FIGURES

poses  refine |PSNR{ LPIPS| SSIM{|PSNRT LPIPS| SSIMf|PSNRT LPIPS| SSIM{|PSNR{ LPIPS] SSIM{|PSNRT LPIPS| SSIM{t
Ours| Motor - 3317 0.05 092 | 3235 0.06 091 | 3301 0.08 091 | 3289 052 092 | 3339 007 090
Ours| Motor v 3310 0.05 092 | 3231 006 091 | 3305 0.08 091 |3277 005 092 | 3358 008 0.90
Ours| COLMAP 3343 005 093 | 3218 0.06 091 | 3301 008 091 | 3269 005 091 | 3388 0.06 091

either images deblurred through events or event-enhanced
NeRFs. Notice that, we could not finetune EFNet [38] on
Ev-DeblurCDAVIS as, differently from simulation, we do
not have corresponding sharp images for each blurry train-
ing view. We designed the Ev-DeblurCDAVIS dataset in
such a way as to ensure reliable ground truth collection,
but also to showcase the ability of our network to tackle
a known limitation of image-only DeblurNeRF-like archi-
tectures. While these networks work particularly well on
random motion patterns, they fail in the presence of consis-
tent blur, i.e., when the motion pattern is similar in each
exposure. This is the case of Ev-DeblurCDAVIS, where
image-only baselines such as DP-NeRF [18] and PDRF [6]
struggle to remove blur (see Figures 5 and 9 of this supple-
mentary material and Figure 3 of the paper). For similar
reasons, BAD-NeRF diverges after a few training iterations
on this dataset. We address this by fixing the rotation ma-
trix to ground truth and optimizing the translation vector
only (reported as BAD-NeRF* in the table). Despite this,
our method still significantly outperforms BAD-NeRF. Our
architecture, indeed, eliminates ambiguities in motion es-
timation as it leverages additional event-based supervision
to further constrain the NeRF recovery, resulting in signifi-
cantly higher performance.

Effect of using eCRF. In Figure 5 of this document, we
complement the ablation study reported in Table 3 of the pa-
per with a qualitative assessment of our network’s key com-
ponents. As discussed in the previous paragraph, the image-
only architecture struggles in consistent blur conditions.
Notably, incorporating event supervision significantly aids
in the recovery of sharp details, as evident when compar-
ing the first two settings in Figure 5. The performance fur-
ther increases when adding the proposed eCRF module, as

can be noticed in the checkerboard patterns on the back-
ground, the globe in the foreground, and the facial details
of the figures. However, as discussed in the main paper, this
improvement comes at the cost of over-augmented details
and increased contrast, which are not present in the ground
truth reference images. We attribute this phenomenon to
the under-constrained optimization setting, which allows
the eCRF module to freely augment these details as long
as they appear correct once blurred though Ly, We solve
this issue by adding an additional prior, in the form of Lgpy,
which further constrains the network in reconstructing accu-
rate details. The improved quality is clearly demonstrated
in Figure 5, where over-augmented details are removed, but
without compromising essential details.

Event-by-event vs. Event-window loss. In this section,
we extend the analysis of the robustness to training views
reported in Figure 4-left of the paper. Specifically, utilizing
our Ev-DeblurNeRF network, we examine the impact of im-
plementing event supervision on an event-by-event basis, as
we suggest in the paper and proposed in [16, 23], in contrast
to accumulating events occurring over temporal windows
[13, 33], as well as applying supervision only at specific
times during the exposure time, as in E2NeRF [31]. Results
are reported in Figure 6. As the supervision frequency de-
creases, especially in sparse training views regimes, the per-
formance also decreases. This observation aligns with the
findings in [23], which suggest that noise effects and thresh-
old variations in the event stream amplify with event accu-
mulation, ultimately leading to a decrease in overall perfor-
mance. Moreover, when only a few images are available for
training, leveraging the continuous event stream to propa-
gate absolute brightness measurements across unseen image
views proves crucial for achieving top performance. Lever-
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Figure 8. Robustness to motion blur analysis on the factory sample of Ev-DeblurBlender (left). Figures on the right show a qualitative
comparison between DP-NeRF and Ev-DeblurNeRF among different exposures.

aging event-by-event supervision and incorporating a learn-
able camera response function to mitigate noise effects, our
approach achieves the best performance compared to other
solutions.

COLMAP poses on real scenes. Experiments on Ev-
DeblurCDAVIS presented in the paper make use of the
poses obtained from the motor encoder, which tracks the
camera’s movement along the slider. However, in a typical
real-world setting, access to such precise camera poses may
not be available, although they are required by our method
to work. In this section, we investigate a more general sce-
nario where training poses are estimated using COLMAP
instead of relying on the motor encoder.

Inspired by [31], we deblur training images using the
EDI in Eq. (4) of the paper and then use COLMAP to
estimate their poses. Analogous to the experiments con-
ducted in the paper, we use spherical linear interpolation
of the COLMAP poses to obtain poses at events’ times-
tamps during training. At test time, we obtain the test poses
by aligning the ground truth trajectory with that estimated
with COLMAP. Since the two trajectories might not per-
fectly align, we further refine the alignment via gradient
descent before computing metrics, as done in BAD-NeRF
[50], to ensure pixel-perfect aligned test poses. We also in-
clude results of our method trained on encoder poses but
evaluated using refined test poses. Results are presented in
Table 5. Our method using COLMAP poses yields results
comparable to those obtained using motor encoder poses,
thus proving its potential in scenarios where accurate poses
are not available. While performance degradation may oc-
cur in scenarios with more complex motion than that found
in the Ev-DeblurCDAVIS dataset, further investigation into
this aspect is left for future research endeavors.

C. Additional Results

Robustness to blur. In Figure 8 of this document, we
supplement the analysis in Figure 4 of the main paper
by comparing our Ev-DeblurNeRF network against the
top-performing image-based baselines under different blur.
We utilize the factory sample of the EV-DeblurBlender
dataset for this analysis since it allows us to easily con-
trol the blur intensity, and it does not constitute a corner
case for the image-only baselines. We change the expo-
sure time 7 of the simulated camera in the range 7 €
{5,10, 20, 30,40}, which results in an average pixel dis-
placement of {3,5,11,16,20}, and a maximum displace-
ment of {15,24,50,75,96} in each configuration, respec-
tively. The quantitative and qualitative comparison in Fig-
ure 8 shows that using events not only helps in cases of ex-
treme motion but also helps when the motion is not extreme.
While image-only baselines recover details blindly, by try-
ing to estimate the blur formation through a limited set of
camera poses, our network can achieve higher-quality re-
sults as it exploits blur-free information carried by events at
microseconds resolution. Notably, our solution shows great
robustness to motion blur, while image-only performance
decreases significantly as the blur increases. While these
results consider synthetic data, where the effect of noise
and non-idealities is limited, they underscore the promise of
event cameras as complementary sensors for attaining high-
quality image synthesis even in non-ideal conditions.

Robustness to model mismatches. In this section, we an-
alyze the proposed eC'RF' module in terms of increased ro-
bustness to model mismatches. We do so in a real setup,
i.e., on the figures sample of the Ev-DeblurCDAVIS dataset,
by analyzing the sensitivity of our network to the © event-
camera threshold. While in the paper we select © via man-
ual inspection, i.e., by utilizing the event double integral
[29] as visual feedback following [29], we evaluate here the
performance of our model when the © used in L., deviates
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Figure 9. Qualitative comparison of synthetic (top) and real (bottom) motion blur. The remaining EV-DeblurBlender samples are provided
in Figure 3 of the paper. Notice that, while the reference images can exhibit demosaicing artifacts around sharp edges, our reconstructs are
less affected by these as we exploit multi-view supervision through NeRF and directly use color events without interpolation.

from this value. We compare our network against a config- and the L.y, eC RF' can modulate the brightness, or color,
uration that does not use the proposed eC'RF’, as well as a L used for computing the loss, acting as a residual between
network where we also remove Lgp;. Results are reported the model-based supervision (Equation (1) of the paper) and

in Figure 7. By acting in between the rendered color space the brightness actually perceived. As a result, our solution



achieves increased consistency across different choices of
O, showcasing its ability to deviate from the model-based
solution in case needed.

D. Qualitative Results and Video

We conclude this supplementary material by including ex-
tended qualitative results. In Figure 9, we complement
Figure 3 of the paper by comparing the proposed method
against top-performing networks across all remaining sam-
ples on the Ev-DeblurBlender and Ev-DeblurCDAVIS. Ad-
ditionally, we provide a supplementary video showing qual-
itative results on all the samples of our proposed datasets.
We strongly advise readers to watch our additional video
where our method outperforms all baselines in rendering a
novel-view continuous path, showing increased image qual-
ity and fewer artifacts than the other methods.
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