
This paper has been accepted for publication at the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 2023. ©IEEE

Recurrent Vision Transformers for Object Detection with Event Cameras

Mathias Gehrig and Davide Scaramuzza

Robotics and Perception Group, University of Zurich, Switzerland

Abstract

We present Recurrent Vision Transformers (RVTs), a
novel backbone for object detection with event cam-
eras. Event cameras provide visual information with sub-
millisecond latency at a high-dynamic range and with
strong robustness against motion blur. These unique prop-
erties offer great potential for low-latency object detec-
tion and tracking in time-critical scenarios. Prior work in
event-based vision has achieved outstanding detection per-
formance but at the cost of substantial inference time, typ-
ically beyond 40 milliseconds. By revisiting the high-level
design of recurrent vision backbones, we reduce inference
time by a factor of 6 while retaining similar performance.
To achieve this, we explore a multi-stage design that uti-
lizes three key concepts in each stage: First, a convolutional
prior that can be regarded as a conditional positional em-
bedding. Second, local and dilated global self-attention for
spatial feature interaction. Third, recurrent temporal fea-
ture aggregation to minimize latency while retaining tempo-
ral information. RVTs can be trained from scratch to reach
state-of-the-art performance on event-based object detec-
tion - achieving an mAP of 47.2% on the Gen1 automotive
dataset. At the same time, RVTs offer fast inference (< 12
ms on a T4 GPU) and favorable parameter efficiency (5×
fewer than prior art). Our study brings new insights into
effective design choices that can be fruitful for research be-
yond event-based vision.

Code: https://github.com/uzh-rpg/RVT

1. Introduction

Time matters for object detection. In 30 milliseconds, a
human can run 0.3 meters, a car on public roads covers up
to 1 meter, and a train can travel over 2 meters. Yet, during
this time, an ordinary camera captures only a single frame.

Frame-based sensors must strike a balance between la-
tency and bandwidth. Given a fixed bandwidth, a frame-
based camera must trade-off camera resolution and frame
rate. However, in highly dynamic scenes, reducing the res-
olution or the frame rate may come at the cost of missing
essential scene details, and, in safety-critical scenarios like
automotive, this may even cause fatalities.

Figure 1. Detection performance vs inference time of our RVT
models on the 1 Mpx detection dataset using a T4 GPU. The circle
areas are proportional to the model size.

In recent years, event cameras have emerged as alter-
native sensor that offers a different trade-off. Instead of
counterbalancing bandwidth requirements and perceptual
latency, they provide visual information at sub-millisecond
latency but sacrifice absolute intensity information. In-
stead of capturing intensity images, event cameras measure
changes in intensity at the time they occur. This results in
a stream of events, which encode time, location, and po-
larity of brightness changes [14]. The main advantages of
event cameras are their sub-millisecond latency, very high
dynamic range (> 120 dB), strong robustness to motion
blur, and ability to provide events asynchronously in a con-
tinuous manner.

In this work, we aim to utilize these outstanding proper-
ties of event cameras for object detection in time-critical
scenarios. Therefore, our objective is to design an ap-
proach that reduces the processing latency as much as possi-
ble while maintaining high performance. This is challeng-
ing because event cameras asynchronously trigger binary
events that are spread of pixel space and time. Hence, we
need to develop detection algorithms that can continuously
associate features in the spatio-temporal domain while si-
multaneously satisfying strict latency requirements.

Recent work has shown that dynamic graph neural net-
works (GNNs) [28, 43] and sparse neural networks [10, 34,
55, 57] can theoretically achieve low latency inference for
event-based object detection. Yet, to achieve this in prac-
tical scenarios they either require specialized hardware or

ar
X

iv
:2

21
2.

05
59

8v
2 

 [
cs

.C
V

] 
 3

 A
pr

 2
02

3



their detection performance needs to be improved.
An alternative thread of research approaches the problem

from the view of conventional, dense neural network de-
signs [7,19,20,26,38]. These methods show impressive per-
formance on event-based object detection, especially when
using temporal recurrence in their architectures [26, 38].
Still, the processing latency of these approaches remains
beyond 40 milliseconds such that the low-latency aspect of
event cameras cannot be fully leveraged. This raises the
question: How can we achieve both high accuracy and effi-
ciency without requiring specialized hardware?

We notice that common design choices yield a subop-
timal trade-off between performance and compute. For
example, prior work uses expensive convolutional LSTM
(Conv-LSTM) cells [44] extensively in their feature extrac-
tion stage [26, 38] or relies on heavy backbones such as
the VGG architecture [26]. Sparse neural networks instead
struggle to model global mixing of features which is crucial
to correctly locate and classify large objects in the scene.

To achieve our main objective, we fundamentally revisit
the design of vision backbones for event-based object de-
tection. In particular, we take inspiration from neural net-
work design for conventional frame-based object detection
and combine them with ideas that have proven successful
in the event-based vision literature. Our study deliberately
focuses on macro design of the object detection backbone
to identify key components for both high performance and
fast inference on GPUs. The resulting neural network is
based on a single block that is repeated four times to form
a multi-stage hierarchical backbone that can be used with
off-the-shelf detection frameworks.

We identify three key components that enable an excel-
lent trade-off between detection performance and inference
time. First, we find that interleaved local- and global self-
attention [50] is ideally suited to mix both local and global
features while offering linear complexity in the input reso-
lution. Second, this attention mechanism is most effective
when preceded by a simple convolution that also downsam-
ples the spatial resolution from the previous stage. This
convolution effectively provides a strong prior about the
grid-structure of the pixel array and also acts as a condi-
tional positional embedding for the transformer layers [9].
Third, temporal recurrence is paramount to achieve strong
detection performance with events. Differently from prior
work, we find that Conv-LSTM cells can be replaced by
plain LSTM cells [18] that operate on each feature sepa-
rately1. By doing so, we dramatically reduce the number of
parameters and latency but also slightly improve the over-
all performance. Our full framework achieves competitive
performance and higher efficiency compared to state-of-the-
art methods. Specifically, we reduce parameter count (from
100M to 18.5 M) and inference time (from 72 ms to 12 ms)

1equivalent to 1× 1 kernel in a Conv-LSTM cell

up to a factor of 6 compared to prior art [26]. At the same
time, we train our networks from scratch, showing that these
benefits do not originate from large-scale pretraining.

Our paper can be summarized as follows: (1) We re-
examine predominant design choices in event-based object
detection pipelines and reveal a set of key enablers for high
performance in event-based object detection. (2) We pro-
pose a simple, composable stage design that unifies the cru-
cial building blocks in a compact way. We build a 4-stage
hierarchical backbone that is fast, lightweight and still of-
fers performance comparable to the best reported so far. (3)
We achieve state-of-the-art object detection performance of
47.2% mAP on the Gen1 detection dataset [11] and a highly
competitive 47.4% mAP on the 1 Mpx detection dataset
[38] while training the proposed architecture from scratch.
In addition, we also provide insights into effective data aug-
mentation techniques that contribute to these results.

2. Related Work

2.1. Object Detection for Event Cameras

Object detection in the event camera literature can be
broadly classified into three emerging research directions.

Recent work explores graph neural networks to dy-
namically construct a spatio-temporal graph [28, 35, 43].
New nodes and node edges are established by sub-sampling
events and finding existing nodes that are close in space-
time. The main challenge is to design the architecture such
that information can propagate over vast distances in the
space-time volume. This is relevant, for example, when
large objects move slowly with respect to the camera. Fur-
thermore, aggressive sub-sampling of events can lead to the
removal of potentially crucial information, but is often re-
quired to maintain low-latency inference.

A second line of work employs spiking neural net-
works (SNNs) that propagate information sparsely within
the network [10, 55, 57]. SNNs are closely related to dense
recurrent neural networks (RNNs) in that each spiking neu-
ron has an internal state that is propagated in time. Differ-
ently from RNNs, neurons in SNNs only emit spikes when-
ever a threshold is reached. This spike generation mech-
anism is not differentiable, which leads to substantial diffi-
culties in optimizing these networks [4,22,23,36,45,47,56].
One workaround is to avoid the aforementioned thresh-
old and instead propagate features throughout the recep-
tive field [34] . The downside of this mechanism is that
the sparse-processing property is lost within deeper layers
of the network. Overall, the design and training of SNNs
still requires fundamental investigation before competitive
performance can be reached.

A third research direction is concerned with exploring
dense neural networks for object detection with event
cameras. The first step is the creation of a dense tensor



Figure 2. Overview of the unrolled computation graph of our multi-stage recurrent backbone. Events are processed into a tensor repre-
sentation before they are used as input to the first stage. Each stage also reuses the LSTM states (c: cell, h: hidden) from the previous
timestep. Finally, the detection framework interfaces with the backbone from the second stage onwards. Specifically, the hidden states of
the LSTMs are used as features for the detection framework.

(event representation) that enables compatibility with dense
operations such as convolutions. Early work directly uses a
single event representation generated from a short temporal
window of events to infer detections [7, 19, 20]. These ap-
proaches discard relevant information from beyond the con-
sidered temporal window such that detecting slowly moving
objects becomes difficult or impossible. Followup work ad-
dresses this issue by incorporating recurrent neural network
layers [26,38] which drastically improved the detection per-
formance. We follow this line of work but revamp dominant
architecture choices to build a canonical framework that is
fast, lightweight and highly performant.

2.2. Vision Transformers for Spatio-Temporal Data

The success of attention-based models [52] in NLP has
inspired the exploration of transformer-based architectures
in computer vision [12]. Attention-based models have re-
cently also been explored in video classification [1,5,13,48]
where the models are applied directly to a set of frames.
While these approaches have shown promising results in
spatio-temporal modelling, they are optimized for offline
processing of stored video data.

In event-based vision, attention-based components have
found applications in classification [42, 53] and image re-
construction [54], and monocular depth estimation [31], but
their use in object detection has yet to be investigated.

3. Method

Our object detection approach is designed to process
a stream of events sequentially as they arrive. Incoming
events are first processed into tensors that represent events
in space and time. In every timestep, our network takes
a new event representation as input as well as the previ-
ous states of the recurrent neural network layers. After each

Figure 3. RVT block structure. The input is convolved with
kernel size k × k and stride s. Block-SA applies self-attention in
local windows while Grid-SA is a global operation using dilated
attention. Finally, each block ends with an LSTM that reuses the
(cell- and hidden) states from the previous timestep. The LSTM
is applied to each feature separately. Normalization and activation
layers are omitted for conciseness.

pass through the backbone, the output of the RNNs are used
as input to the detection framework. The following sec-
tions elaborate on each one of these steps. Fig. 2 shows an
overview of the RVT architecture.

Event Processing Each pixel of an event camera can in-
dependently trigger an event when a significant log bright-
ness change occurs. An event can be positive or nega-
tive depending on the sign of the brightness change. We
characterize an event with polarity pk ∈ {0, 1} as a tuple
ek = (xk, yk, tk, pk) that occurs at pixel (xk, yk) at time
tk. Modern event cameras can produce 10s of millions of
events per second which renders event-by-event processing
out of reach on conventional processing units.

In this work we opt for a very simple preprocessing step
to enable compatibility with convolutional neural network
layers which, as we will show later in Sec. 4.2, are an im-



portant contributor to the performance of our model.
Our preprocessing step starts with the creation of a 4-

dimensional tensor E. The first dimension consists of two
components and represents the polarity. The second dimen-
sion has T components and is associated with T discretiza-
tion steps of time. The 3rd and 4th dimension represent
height and width of the event camera. We process set of
events E within a time duration [ta, tb) the following way:

E(p, τ, x, y) =
∑

ek∈E
δ(p− pk)δ(x− xk, y − yk)δ(τ − τk),

τk =

⌊
tk − ta
tb − ta

· T
⌋

In words, we create T 2-channel frames where each pixel
contains the number of positive or negative events within
one of the T temporal frames. As a final step, we flatten
the polarity and time dimension to retrieve a 3-dimensional
tensor with shape (2T,H,W ) to directly enable compati-
bility with 2D convolutions. We implement the presented
algorithm with byte tensors to save memory and band-
width. Other, more sophisticated representations are pos-
sible [2, 3, 6, 16, 26, 51, 58], but their thorough evaluation is
not our focus.

3.1. Mixing Spatial and Temporal Features

The main difficulty of object detection with event cam-
eras is that at any given time, the neural network should be
able to efficiently (1) extract local- and global task-relevant
features in pixel space because objects can cover both very
small regions or large portions of the field of view; (2) ex-
tract features from very recent events (e.g. moving edges) as
well as events from several seconds ago. This is necessary
because some objects are moving slowly with respect to the
camera such that they generate very few events over time.
These observations motivate us to investigate transformer
layers for spatial feature extraction and recurrent neural net-
works for efficient temporal feature extraction. Fig. 3 illus-
trates the components of a single stage.

Spatial Feature Extraction The spatial feature extrac-
tion stage should incorporate a prior about the fact that pix-
els are arranged in a 2D grid as early as possible in the com-
putation graph. We enable this by using a convolution with
overlapping kernels on the input features that at the same
time spatially downsamples the input or features from the
previous stage. This convolution also endows our model
with a conditional positional embedding [9] such that we
do not require absolute [12, 52] or relative [32] positional
embeddings. Our ablation study in Sec. 4.2 shows that
overlapping kernels lead to a substantial boost in detection
performance.

In a subsequent step, the resulting features are trans-
formed through multi-axis self-attention. We quickly sum-
marize the steps but refer to Tu et. al [50] for an elaborate
explanation. Multi-axis attention consists of two stages us-
ing self-attention. The first stage performs local feature in-
teraction while the second stage enables dilated global fea-
ture mixing. More specifically, the features are first grouped
locally into non-overlapping windows: Let X ∈ RH×W×C

be the input feature tensor. We reshape the tensor to a shape
(HP × W

P , P × P,C) where P × P is the window size in
which multi-head self-attention [52] is applied. This block
attention (Block-SA in Fig. 3) is used to model local inter-
actions. As a next step, we would ideally be able to extract
features globally. One straightforward way to achieve this
would be applying self-attention on the whole feature map.
Unfortunately, global self-attention has quadratic complex-
ity in the number of features. Instead, we use grid attention
(Grid-SA in Fig. 3). Grid attention partitions the feature
maps into a grid of shape (G×G, HG×W

G , C) using aG×G
uniform grid. The resulting windows are of size H

G × W
G .

Self-attention is then applied to these windows which cor-
responds to global, dilated mixing of features.

We study alternative designs as part of our architecture
in the ablation studies in Sec. 4.2.

Temporal Feature Extraction We opt for temporal fea-
ture aggregation with LSTM [18] cells at the end of the
stage. Differently from prior work [26,38] we find that tem-
poral and spatial feature aggregation can be completely sep-
arated. This means that we use plain LSTM cells such that
the states of the LSTMs do not interact with each other. By
avoiding Conv-LSTM units [44], we can drastically reduce
the computational complexity and parameter count. I.e. a
Conv-LSTM with kernel size k × k and stride 1 demands
k2 the number of parameters and compute compared to the
original LSTM cell. We examine this aspect in the experi-
mental Sec. 4.2.

Model Details We apply LayerNorm [24] before and
LayerScale [49] after each attention and MLP module, and
add a residual connection after each module. We found that
LayerScale enables a wider range of learning rates.

3.2. Hierarchical Multi-Stage Design

We compose multiple RVT blocks together to form a
multi-stage hierarchical backbone. The overall architecture
is shown in Fig. 2.

At first, a local temporal slice of events is processed into
a 2D tensor format as formulated in the beginning of this
section. Subsequently, each stage takes the previous fea-
tures as input and optionally uses the LSTM state from the
last timestep to compute features for the next stage. By sav-
ing the LSTM states for the following timestep, each re-



Channels

Stage Size Kernel Stride RVT-T RVT-S RVT-B

S1 1/4 7 4 32 48 64
S2 1/8 3 2 64 96 128
S3 1/16 3 2 128 192 256
S4 1/32 3 2 256 384 512

Table 1. RVT parameters and architecture variation. All model
variants share the same parameter set except the number of chan-
nels per stage. Each stage initially applies a 2D convolution with
kernel and stride as indicated in the table.

current stage can retain temporal information for the whole
feature map.

We follow prior work and use features from the second
to the fourth stage for the object detection framework. To
do so, we reshape the hidden states of the LSTMs into 2D
feature maps.

4. Experiments

We conduct ablations and evaluation our model on the
Gen1 [11] and 1 Mpx [38] event camera datasets. We train
three variants of our model on both datasets: the base model
RVT-B and its small and tiny variants RVT-S and RVT-T.
Parameter details for the models are shown in Tab. 1.

4.1. Setup

Implementation Details We initialize all layers ran-
domly except LayerScale which is initialized to 1e-5 for
each module. Our models are trained with mixed precision
for 400k iterations with the ADAM optimizer [21] using a
OneCycle learning rate schedule [46] with a linear decay
from a maximum learning rate. We use a mixed batching
strategy that applies backpropagation through time (BPTT)
to half of the samples of the batch and truncated BPTT
(TBPTT) to the other half. More details regarding this
batching strategy can be found in the supplementary ma-
terial. Our data augmentation includes random horizontal
flipping, zooming in and zooming out. More details on data
augmentation are available in Sec. 4.2 and the supplemen-
tary material. To construct event representations, we con-
sider 50 ms time windows that are discretized into T = 10
bins. Finally, we use the YOLOX framework [15], which
includes the IOU loss, class loss and regression loss. These
losses are averaged both over the batch and sequence length
for each optimization step.

To compare against prior work on the Gen1 dataset, we
train our models with a batch size of 8, sequence length of
21, and learning rate of 2e-4. The training takes approxi-
mately 2 days on a single A100 GPU.

On the 1 Mpx dataset, we train with a batch size of 24,

Gen1 1 Mpx

Block-type mAP AP50 mAP AP50 Params (M)

multi-axis 47.6 70.1 46.0 72.3 18.5
Swin 46.7 68.7 44.4 71.7 18.5
ConvNeXt 45.5 65.8 42.3 70.6 18.7

Table 2. Spatial Aggregation. Multi-axis attention leads to the
best results on both the Gen1 and 1 Mpx dataset.

sequence length of 5, and learning rate of 3.5e-4. The train-
ing takes approximately 3 days on two A100 GPUs.

Datasets The Gen1 Automotive Detection dataset [11]
consists of 39 hours of event camera recordings at a resolu-
tion of 304× 240. In total, the Gen1 dataset contains 228k
car and 28k pedestrian bounding boxes available at 1, 2 or 4
Hz. We follow the evaluation protocol of prior work [26,38]
and remove bounding boxes with a side length of less than
10 pixels and a diagonal of less than 30 pixels.

The 1 MPx dataset [38] also features driving scenarios
but provides recordings at a higher resolution of 720×1280
over a period of several months at day and night. It consists
of approximately 15 hours of event data labeled at a fre-
quency of 30 or 60 Hz with a total amount of 25 million
bounding box labels for three classes (car, pedestrian, and
two-wheeler). We follow the evaluation protocol of prior
work [26, 38]. That is, we remove bounding boxes with a
side length of less than 20 pixels and a diagonal of less than
60 pixels and halve the input resolution to nHD resolution
(640×360). We provide qualitative examples of this dataset
together with predictions of our base model in Fig. 4.

For both datasets, mean average precision (mAP) is the
main metric [29] that we consider.

4.2. Ablation Studies

This section examines the two main contributors to the
final performance of the proposed model. First, we inves-
tigate key components and design choices of the proposed
backbone. Second, we study the influence of different data
augmentation techniques that are compatible with our se-
quential problem setting.

Unless stated otherwise, the ablation studies are per-
formed on the Gen1 validation set using the best performing
model after 400k iterations. To reduce the training time, we
use BPTT with a sequence length of 11 instead 21.

4.2.1 Model Components

Spatial Interaction In Tab. 2, we study different spatial
aggregation techniques. For a fair comparison, we keep
the LSTM and convolutional downsampling layers identi-
cal and only exchange the attention and MLP modules. We



Conv. kernel type mAP AP50 AP75 Params (M)

overlapping 47.6 70.1 52.6 18.5
non-overlapping 46.1 68.6 50.5 17.6

Table 3. Downsampling Strategy. The usage of overlapping ker-
nels leads to higher performance at the expense of a slight increase
in the number of parameters.

LSTM kernel size mAP AP50 AP75 Params (M)

1× 1 47.6 70.1 52.6 18.5
3× 3 46.5 69.0 51.4 40.8
3× 3 depth-sep 46.3 67.2 51.2 18.6

Table 4. LSTM kernel size. Conv-LSTM variants do not outper-
form the feature specific (1× 1) LSTM.

compare multi-axis attention with ConvNext blocks [33]
and Swin transformer blocks [32]. ConvNext is a convo-
lutional neural network architecture that has shown com-
petitive performance with transformer-based models on a
wide range of tasks, including object detection. We use
the default kernel size of 7 × 7 as originally suggested
and place three ConvNeXt blocks in each stage to approx-
imately match the number of parameters of the reference
model. Swin, instead, is an attention-based model that ap-
plies local self-attention in windows that interact with each
other through cyclic shifting.

We find that our Swin variant achieves better perfor-
mance than the ConvNext variant, however, both are outper-
formed by multi-axis self-attention [50] on both the Gen1
and 1 Mpx dataset. This experiment suggests that global
interaction at every stage (multi-axis) is advantageous to
purely local interaction (Swin, ConvNext).

Convolutional Downsampling The original vision trans-
former [12] architecture does not perform local feature in-
teraction with convolutional layers. Some popular hierar-
chical counterparts also choose to apply downsample fea-
tures without overlapping kernels [8, 32]. In Tab. 3, we
compare overlapping and non-overlapping convolutional
kernels in both the input layer (patch embedding) and fea-
ture downsampling stage. While non-overlapping convolu-
tions reduce the number of parameters, they cause a sub-
stantial drop in performance. Consequently, we choose
overlapping kernels in all stages of the network.

LSTM with Convolutions Prior state-of-the-art ap-
proaches on object detection with event cameras heavily
rely on convolutional LSTM cells [26, 38]. We revisit this
design choice and experiment with plain LSTM cells and a
depthwise separable Conv-LSTM variant [39]. The depth-

S1 S2 S3 S4 mAP AP50 AP75

32.0 54.8 31.4
X 39.8 63.5 41.6

X X 44.2 68.4 47.5
X X X 46.9 70.0 50.8

X X X X 47.6 70.1 52.6

Table 5. LSTM placement. LSTM cells contribute to the overall
performance even in the early stages.

wise separable Conv-LSTM first applies a depthwise sepa-
rable convolution on both the input and hidden state before
a point-wise (1 × 1) convolution is applied. Our results in
Tab. 4 suggest that plain LSTM cells are sufficient in our
model and even outperform both variations. This is to some
degree surprising because both variants are a strict super-
set of the plain LSTM. We decide to use a plain LSTM cell
based on these observations.

LSTM Placement In this ablation we study the influence
of using temporal recurrence only in a subset of stages or
not at all. For all comparisons, we leave the model exactly
the same but reset the states of the LSTMs at selected stages
in each timestep. This way, we can simulate the absence
of recurrent layers while keeping the number of parameters
constant in the comparisons.

The results in Tab. 5 suggest that using no recurrence
at all leads to a drastic decline of detection performance.
Enabling the LSTMs in each stage, starting from the fourth
consistently leads to enhanced performance. Surprisingly,
we find that adding an LSTM to the first stage also leads to
improvements, albeit the increase in mAP is not large. In
general, this experiment suggests that the detection frame-
work benefits from features that have been augmented with
temporal information. Based on our observations, we de-
cide to keep the LSTM also in the first stage.

4.2.2 Data Augmentation

While data augmentation is not directly related to the model
itself, it greatly influences the final result as we will illus-
trate next. Here, we investigate three data augmentation
techniques that are suitable for object detection on spatio-
temporal data: Random (1) horizontal flipping, (2) zoom-in,
and (3) zoom-out.

Zoom-in augmentation randomly selects crops that con-
tain at least one full bounding box at the final timestep of
the BPTT sequence (i.e. during training). This crop is
then applied to the rest of the sequence before the crops are
rescaled to the default resolution. This procedure ensures
that we have at least a single label to compute the loss func-
tion while maintaining the same resolution during training.



Gen1 1 Mpx

Method Backbone Detection Head mAP Time (ms) mAP Time (ms) Params (M)

NVS-S [27] GNN YOLOv1 [40] 8.6 - - - 0.9
Asynet [34] Sparse CNN YOLOv1 14.5 - - - 11.4
AEGNN [43] GNN YOLOv1 16.3 - - - 20.0
Spiking DenseNet [10] SNN SSD [30] 18.9 - - - 8.2
Inception + SSD [19] CNN SSD 30.1 19.4 34.0 45.2 > 60*
RRC-Events [7] CNN YOLOv3 [41] 30.7 21.5 34.3 46.4 > 100*
MatrixLSTM [6] RNN + CNN YOLOv3 31.0 - - - 61.5
YOLOv3 Events [20] CNN YOLOv3 31.2 22.3 34.6 49.4 > 60*
RED [38] CNN + RNN SSD 40.0 16.7 43.0 39.3 24.1
ASTMNet [26] (T)CNN + RNN SSD 46.7 35.6 48.3 72.3 > 100*
RVT-B (ours) Transformer + RNN YOLOX [15] 47.2 10.2 (3.7) 47.4 11.9 (6.1) 18.5

RVT-S (ours) Transformer + RNN YOLOX 46.5 9.5 (3.0) 44.1 10.1 (5.0) 9.9
RVT-T (ours) Transformer + RNN YOLOX 44.1 9.4 (2.3) 41.5 9.5 (3.5) 4.4

Table 6. Comparisons on test sets of Gen1 and 1 Mpx datasets. Best results in bold and second best underlined. Brackets (·) in runtime
indicate the inference time with JIT-compiled code using torch.compile. A star ∗ suggests that this information was not directly
available and estimated based on the publications. Runtime is measured in milliseconds for a batch size of 1. We used a T4 GPU for RVT
to compare against indicated timings in prior work [26, 38] on comparable GPUs (Titan Xp).

h-flip zoom-in zoom-out mAP AP50 AP75

38.1 59.5 41.1
X 41.6 63.5 45.5

X 45.8 67.8 49.8
X 44.1 65.7 48.4

X X X 47.6 70.1 52.6

Table 7. Data Augmentation. Data augmentation consistently
improves the results.

Zoom-out augmentation resizes the full input to a lower
resolution and randomly places the downscaled input in a
zero-tensor initialized at the default resolution. This pro-
cedure is then applied in an identical way to the remaining
BPTT sequence.

Table 7 shows that our model is performing poorly if no
data augmentation is applied. Overall, we find that data aug-
mentation is important to combat overfittig not only on the
Gen1 sequence but also on the 1 Mpx dataset. The most ef-
fective augmentation is zoom-in, followed by zoom-out and
horizontal flipping. Based on these results, we decide to ap-
ply all data augmentation techniques. We report the specific
hyperparameters in the supplementary material.

4.3. Benchmark Comparisons

In this section, we compare our proposed neural network
architecture against prior work on both the Gen1 [11] and
1 Mpx dataset [38] and summarize the results in Tab. 6.
We train three models, a base model (RVT-B) with approx-

imately 18.5 million parameters, a small variant (RVT-S)
with 9.9 million parameters, and a tiny model (RVT-T) with
4.4 million parameters by adapting the channel dimensions
in each stage. Their architectural hyperparameters are out-
lined in Tab. 1. To compare with prior work, we choose the
models based on their best performance on the validation
set and evaluate them on the test set.

From Tab. 6 we can draw multiple conclusions. First, we
observe that models using recurrent layers consistently out-
perform other approaches, both sparse (GNNs, SNNs) and
dense feed-forward models without recurrent layers (Incep-
tion+SSD, RRC-Events, YOLOv3 Events) by an mAP of
more than 10 on both datasets. One notable exception is
MatrixLSTM [6] which applies LSTM cells directly at the
input. In contrast, RED [38] and ASTMNet [26] employ
recurrent layers only in deeper layers.

Our base model achieves a new state-of-the-art perfor-
mance of 47.2 mAP on the Gen1 dataset and 47.4 mAP on
the 1 Mpx dataset. ASTMNet claims comparable results on
both datasets albeit at the cost of using a much larger back-
bone and increased inference time. The RED model, also
reports favorable results, but achieves 7.2 lower mAP on the
Gen1 and 4.4 lower mAP on the 1 Mpx dataset compared
to our model. Finally, our tiny model is amongst the small-
est in our comparison. Still, it achieves 4.1 higher mAP on
the Gen1 dataset than the RED model while using 5 times
fewer parameters.

Inference Time We also compute the inference time of
our model on a T4 GPU with a batch size of 1. Unfortu-



Figure 4. Predictions on the 1 Mpx dataset. All examples are thematically picked to illustrate the behaviour of the model in different
scenarios. (d) shows a scenario in which the model can still partially detect objects in absence of events due the temporal memory.

nately, both RED and ASTMNet are not open source such
that we cannot directly compare inference time on the same
GPU model. Instead, we use the timings provided by the
authors that conducted their timing experiments on compa-
rable GPUs (e.g. Titan Xp). We report the timing results of
our models in Tab. 6 and also visualize them in Fig. 1.

To compare against prior work we first compute the in-
ference time in PyTorch eager mode. In eager mode, our
base model achieves an inference time of 10.2 milliseconds
(ms) on the Gen1 dataset (304 × 240 resolution). This im-
plies a latency reduction of 6 ms compared to RED and over
3 times lower inference time than ASTMNet. On the the 1
Mpx dataset, at a resolution of 640 × 360, our base model
takes 11.9 ms for a forward pass, which is 3 times faster
than RED and over 5 times faster than ASTMNet.

Even on a T4 GPU, most of the inference time is frame-
work overhead. To overcome this partially, we use the JIT
compilation feature torch.compile of PyTorch 2 [37].
As Tab. 6 shows, this almost halves the inference time for
RVT-B on the 1 Mpx dataset and reduces the inference time
by a factor of 2.7 on the Gen1 dataset. As expected, the
small and tiny models benefit even more from JIT compila-
tion. For example, RVT-T only takes 2.3 ms for a forward
pass on Gen1 and 3.5 ms on 1 Mpx. On a RTX 3090 GPU,
RVT-B completes a forward pass in 2.8 ms on the 1 Mpx
dataset, which shows the potential for low-latency inference
if power consumption is less of a concern.

5. Discussion and Limitations

We use a very simple event representation which does
not leverage the full potential of event-based data. For ex-
ample, we only have a weak prior on the order of events be-
cause we process the temporal dimension directly with fully
connected layers. Recent work has shown substantial gains
by introducing temporal convolutions in early layers [26].
Efficient low-level processing of event data is still an open

research problem that we have not addressed in this work.
Our approach currently only uses event streams to de-

tect objects. Frames yield complementary information that,
when properly incorporated, will yield significantly en-
hanced detection performance. For example, in Fig. 4 (d)
we can see that our model can retain information over some
period when no events are available. Still, the memory of
the network will fade and detection performance deterio-
rates. High quality frames even at low frame-rate could
provide the missing complementary information. Hence,
we believe that a multi-modal extension of our method on a
suitable dataset [17, 25] is a promising next step.

6. Conclusion
We introduced a novel backbone architecture for object

detection with event cameras. The architecture consists of
a stage design that is repeatedly applied to create a multi-
stage hierarchical neural network. Each stage compactly
incorporates convolutional priors, local- and sparse global
attention and recurrent feature aggregation. Our experi-
ments highlight that recurrent vision transformers can be
trained from scratch to reach state-of-the-art performance in
object detection with event cameras. The resulting canon-
ical stage-design is directly compatible with existing de-
tection frameworks, and paves the way to low-latency ob-
ject detection with event cameras on conventional hardware.
Nonetheless, we hope that this work also inspires novel de-
signs in future neuromorphic systems.

7. Acknowledgment
This work was supported by the National Centre of

Competence in Research (NCCR) Robotics (grant agree-
ment No. 51NF40-185543) through the Swiss National
Science Foundation (SNSF), and the European Research
Council (ERC) under grant agreement No. 864042 (AG-
ILEFLIGHT).



References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vi-
sion transformer. In Int. Conf. Comput. Vis. (ICCV), 2021.

[2] Raymond Baldwin, Ruixu Liu, Mohammed Mutlaq Alma-
trafi, Vijayan K Asari, and Keigo Hirakawa. Time-ordered
recent event (TORE) volumes for event cameras. IEEE
Trans. Pattern Anal. Mach. Intell., 2022.

[3] Sami Barchid, Jose Mennesson, and Chaabane Djeraba.
Bina-rep event frames: A simple and effective representation
for event-based cameras. In IEEE Int. Conf. Image Process.
(ICIP), 2022.

[4] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias
Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang
Maass. A solution to the learning dilemma for recurrent net-
works of spiking neurons. Nature Communications, 2020.

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In Proc. Int. Conf. Mach. Learning (ICML), 2021.

[6] Marco Cannici, Marco Ciccone, Andrea Romanoni, and
Matteo Matteucci. Asynchronous convolutional networks for
object detection in neuromorphic cameras. In IEEE Conf.
Comput. Vis. Pattern Recog. Workshops (CVPRW), 2019.

[7] Nicholas F. Y. Chen. Pseudo-labels for supervised learn-
ing on dynamic vision sensor data, applied to object detec-
tion under ego-motion. In IEEE Conf. Comput. Vis. Pattern
Recog. Workshops (CVPRW), 2018.

[8] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. In Conf. Neural Inf. Process. Syst. (NeurIPS),
2021.

[9] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-
aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-
sitional encodings for vision transformers, 2021.

[10] Loı̈c Cordone, Benoı̂t Miramond, and Philippe Thierion. Ob-
ject detection with spiking neural networks on automotive
event data. In Int. Joint Conf. Neural Netw. (IJCNN), 2022.

[11] Pierre de Tournemire, Davide Nitti, Etienne Perot, Davide
Migliore, and Amos Sironi. A large scale event-based detec-
tion dataset for automotive, 2020.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In Int. Conf. Learn. Representations (ICLR), 2021.

[13] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-
ing He. Masked autoencoders as spatiotemporal learners.
arXiv e-prints, 2022.

[14] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew Davison, Jörg Conradt, Kostas Daniilidis, and Da-
vide Scaramuzza. Event-based vision: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 2020.

[15] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021, 2021.

[16] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpa-
nis, and Davide Scaramuzza. End-to-end learning of repre-
sentations for asynchronous event-based data. In Int. Conf.
Comput. Vis. (ICCV), 2019.

[17] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide
Scaramuzza. Dsec: A stereo event camera dataset for driving
scenarios. IEEE Robot. Autom. Lett., 2021.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 1997.

[19] Massimiliano Iacono, Stefan Weber, Arren Glover, and
Chiara Bartolozzi. Towards event-driven object detection
with off-the-shelf deep learning. In IEEE/RSJ Int. Conf. In-
tell. Robot. Syst. (IROS), 2018.

[20] Zhuangyi Jiang, Pengfei Xia, Kai Huang, Walter Stechele,
Guang Chen, Zhenshan Bing, and Alois Knoll. Mixed frame-
/event-driven fast pedestrian detection. In IEEE Int. Conf.
Robot. Autom. (ICRA), 2019.

[21] Diederik P. Kingma and Jimmy L. Ba. Adam: A method for
stochastic optimization. Int. Conf. Learn. Representations
(ICLR), 2015.

[22] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda,
Gopalakrishnan Srinivasan, and Kaushik Roy. Enabling
spike-based backpropagation for training deep neural net-
work architectures. Front. Neurosci., 2020.

[23] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-
ing deep spiking neural networks using backpropagation.
Front. Neurosci., 2016.

[24] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv e-prints, 2016.

[25] Jianing Li, Siwei Dong, Zhaofei Yu, Yonghong Tian, and
Tiejun Huang. Event-based vision enhanced: A joint detec-
tion framework in autonomous driving. In 2019 IEEE Inter-
national Conference on Multimedia and Expo (ICME), 2019.

[26] Jianing Li, Jia Li, Lin Zhu, Xijie Xiang, Tiejun Huang, and
Yonghong Tian. Asynchronous spatio-temporal memory net-
work for continuous event-based object detection. IEEE
Trans. Image Process., 2022.

[27] Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng
Cui, Hujun Bao, and Guofeng Zhang. Graph-based asyn-
chronous event processing for rapid object recognition. In
Int. Conf. Comput. Vis. (ICCV), October 2021.

[28] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2021.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Eur. Conf. Comput. Vis. (ECCV), pages 740–755. 2014.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: Single shot MultiBox detector. In Eur. Conf.
Comput. Vis. (ECCV), 2016.

[31] Xu Liu, Jianing Li, Xiaopeng Fan, and Yonghong Tian.
Event-based monocular dense depth estimation with recur-
rent transformers. arXiv e-prints, 2022.



[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Int. Conf. Comput. Vis. (ICCV), 2021.

[33] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2022.

[34] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and
Davide Scaramuzza. Event-based asynchronous sparse con-
volutional networks. In Eur. Conf. Comput. Vis. (ECCV),
2020.

[35] Anton Mitrokhin, Zhiyuan Hua, Cornelia Fermuller, and
Yiannis Aloimonos. Learning visual motion segmentation
using event surfaces. In IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), June 2020.

[36] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke.
Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine, 2019.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Conf. Neural Inf. Process. Syst. (NeurIPS), 2019.

[38] Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan
Masci, and Amos Sironi. Learning to detect objects with a
1 megapixel event camera. In H. Larochelle, M. Ranzato, R.
Hadsell, M.F. Balcan, and H. Lin, editors, Conf. Neural Inf.
Process. Syst. (NeurIPS), 2020.

[39] Andreas Pfeuffer and Klaus Dietmayer. Separable convolu-
tional LSTMs for faster video segmentation. In IEEE Intel-
ligent Transportation Systems Conference (ITSC), 2019.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
2016.

[41] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement, 2018.

[42] Alberto Sabater, Luis Montesano, and Ana C. Murillo. Event
transformer. a sparse-aware solution for efficient event data
processing. In IEEE Conf. Comput. Vis. Pattern Recog.
Workshops (CVPRW), 2022.

[43] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza.
Aegnn: Asynchronous event-based graph neural networks.
In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2022.

[44] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM
network: A machine learning approach for precipitation
nowcasting. In Conf. Neural Inf. Process. Syst. (NeurIPS),
2015.

[45] Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike
layer error reassignment in time. In Conf. Neural Inf. Pro-
cess. Syst. (NeurIPS), 2018.

[46] Leslie N. Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates, 2017.

[47] Aboozar Taherkhani, Ammar Belatreche, Yuhua Li,
Georgina Cosma, Liam P. Maguire, and T.M. McGinnity. A
review of learning in biologically plausible spiking neural
networks. Neural Netw., 2020.

[48] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. In Conf. Neural Inf.
Process. Syst. (NeurIPS), 2022.

[49] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Int. Conf. Comput. Vis. (ICCV), 2021.

[50] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. MaxViT:
Multi-axis vision transformer. In Eur. Conf. Comput. Vis.
(ECCV), 2022.

[51] Stepan Tulyakov, Francois Fleuret, Martin Kiefel, Peter
Gehler, and Michael Hirsch. Learning an event sequence
embedding for dense event-based deep stereo. In Int. Conf.
Comput. Vis. (ICCV), October 2019.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Conf. Neural Inf. Process.
Syst. (NeurIPS), 2017.

[53] Zuowen Wang, Yuhuang Hu, and Shih-Chii Liu. Exploiting
spatial sparsity for event cameras with visual transformers.
In IEEE Int. Conf. Image Process. (ICIP), 2022.

[54] Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-
based video reconstruction using transformer. In Int. Conf.
Comput. Vis. (ICCV), 2021.

[55] Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang,
Yihan Lin, Zhaoxu Yang, and Guoqi Li. Temporal-wise at-
tention spiking neural networks for event streams classifica-
tion. Int. Conf. Comput. Vis. (ICCV), 2021.

[56] Friedemann Zenke and Surya Ganguli. SuperSpike: Super-
vised learning in multilayer spiking neural networks. Neural
Computation, 2018.

[57] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Fe-
lix Heide, Baocai Yin, and Xin Yang. Spiking transformers
for event-based single object tracking. In IEEE Conf. Com-
put. Vis. Pattern Recog. (CVPR), 2022.

[58] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of op-
tical flow, depth, and egomotion. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), 2019.



Supplementary Material

1. Relationship to Temporal Graph Neural
Networks (TGNNs)

The RVT backbone can be understood as an instance of a
discrete-time dynamic graph (DTDG) (section 4.6.1 in [4]).
A DTDG can be derived from continuous-time dynamic
graph (CTDG) by discretizing time.

More specifically, the proposed RVT backbone is an in-
stance of a DTDG with a fixed number of persistent tem-
poral nodes (given a certain input resolution). In our hi-
erarchy, we have four layers of nodes with temporal his-
tory (LSTMs in each stage). From here on, there are two
different interpretations: (1) The layers up to the LSTMs
are a carefully crafted message-passing algorithm interact-
ing directly with the nodes from the previous LSTM nodes
closer to the input; or (2) the strided conv layer creates a
smaller set of nodes. Block-SA subsequently operates on
these nodes by creating a new set of edges (fully graphs con-
nected in local windows) before applying message-passing
via self-attention. The same principle applies to Grid-SA
which instead creates fully connected graphs in a global di-
lated grid. The resulting node features are directly used as
input to the temporal nodes (LSTM) that also use the states
from the previous timestamp to update the node features.

Not every DTDG nor CTDG performs well for event-
based vision. In our work, we constrain the design specif-
ically for the problem to get a better trade-off for task per-
formance and inference speed.

2. Data Pipeline
2.1. Mixed Batching Strategy

Two common ways of training recurrent neural networks
is using either backpropagation through time (BPTT) or
truncated BPTT (TBPTT). This section describes a strategy
that combines both.

BPTT Dataloading For BPTT, the dataloader typically
samples short sequences without replacement from the
dataset. As a consequence, the model cannot use an ini-
tialized hidden state from earlier parts of the full sequence.
This has the advantage that we can perform more aggres-
sive data augmentation during training. However, the down-
side is that the model will fail to generalize to longer se-

Dataloading Strategy mAP AP50 AP75

BPTT 38.8 66.0 39.5
TBPTT 44.1 72.0 46.1
Mixed 46.0 72.3 49.4

Table 1. Dataloading Strategy. Combining BPTT and TBPTT
(Mixed) yields the best results on the 1 Mpx validation set.

quences. One possible solution to this problem is training
with TBPTT.

TBPTT Dataloading For TBPTT, the dataloader again
extracts short sequences. This time, these short sequences
are consecutive sequences from a longer sequences that usu-
ally cannot be loaded into RAM. Now we can train the
model with initialized, detached hidden states from the pre-
vious optimization step. This allows the model to generalize
to longer sequences but also precludes some data augmenta-
tion techniques. For example, zoom-in augmentation on the
whole sequence becomes impractical because we could re-
move too many labels in the process. Finally, it can also lead
to training instabilities and overfitting because the model is
optimized on samples from the same sequences for many
training steps.

Mixing BPTT and TBPTT What we found to work best
is to create two dataloaders: First, a dataloader that ran-
domly samples short sequences from the dataset. This is
useful for training with BPTT and improves the diversity of
samples in the batch. This dataloader also applies the full
set of data augmentations. Second, a dataloader that col-
lates data from iterating through whole sequences. This dat-
aloader is used for training with TBPTT and improves the
capability of the model to generalize to sequences longer
than the training sequence length. In this case, we do not
apply zoom-in augmentation.

Table 1 compares the performance of the RVT-B model
on the validation set of the 1 Mpx dataset using the different
dataloading strategies. The performance of BPTT can be
improved by increasing the sequence length at the cost of
increased memory consumption and training time. Instead,
the mixed dataloading strategy allows training with a short

1

ar
X

iv
:2

21
2.

05
59

8v
2 

 [
cs

.C
V

] 
 3

 A
pr

 2
02

3



Magnitude

Augmentation Probability min max

horizontal flip 0.5
apply zoom 0.8
zoom-in 0.8 1 1.5
zoom-out 1-P(zoom-in) 1 1.2

Table 2. Data Augmentation Parameters. The probability de-
fines the Bernoulli distribution from which we draw the decision
whether to apply this augmentation on a given sample.

sequence length (here 5) while enjoying stable training with
improved detection performance.

In practice, on each GPU, half of the batch is cre-
ated with the BPTT dataloader and the other half with the
TBPTT dataloader. Both batches are separately loaded onto
the GPU before being collated and fed to the model. The
model then dynamically resets the hidden states based on
the information whether each sample in the batch originates
from the BPTT or TBPTT dataloader.

2.2. Data Augmentation Details

We apply three data augmentation techniques to train our
models from scratch. Table 2 summarizes the probability of
each augmentation being used on an individual sample.

For each sample, we may apply horizontal flipping and
also apply a zoom augmentation subsequently. For the
zoom augmentation we draw from a Bernoulli distribution
to indicate whether we apply the augmentation at all. If
zoom augmentation shall be applied, we randomly choose
between zoom-in or zoom-out augmentation based on the
respective probability. For the zoom augmentations, there
is also the parameter that defines the magnitude with which
the augmentation is applied. A magnitude of 1 means that
no zoom is applied while a magnitude greater than 1 in-
dicates how strongly zoom-in or zoom-out is applied with
respect to the original resolution. The magnitude that we fi-
nally apply is drawn from a continuous uniform distribution
with bounds min and max.

3. Additional Model Details
The attention window size for all stages is set to 8 × 10

for the Gen1 dataset and 6×10 for the 1 Mpx dataset. Con-
sequently, the fourth stage employs global self-attention on
the Gen1 dataset, whereas it utilizes four windows at the
same stage for the 1 Mpx dataset.

4. Additional Experiments
This section provides two additional experiments that did

not fit into the main paper. First, we briefly discuss an abla-
tion on the possibility of using residual LSTM layers. Sec-

LSTM residual mAP AP50 AP75

without residual 47.6 70.1 52.6
with residual 46.0 69.8 50.3

Table 3. LSTM with and without residual connection. Using a
skip connection over the LSTM cells leads to worse results on the
Gen1 validation set.

ond, we follow with a qualitative study of cross-dataset gen-
eralization using our model trained on the 1 Mpx dataset.

4.1. Residual LSTM Ablation

Our model employs LSTM cells [3] without
skip/residual connections in the model. We also ex-
perimented with adding skip connections to the LSTM
cells on the Gen1 [1] dataset. Table 3 shows that adding
a residual connection to the LSTM cells leads to worse
results. We hypothesize that this residual connection
hampers the LSTM’s ability to control the mixture of
incoming (current timestep) and retained temporal features
(previous timesteps). For example, it would be difficult
for the residual-LSTM combination to ignore the incoming
feature because the output of the LSTM is simply added to
this feature. Without the residual connection, the LSTM
could set the input gate to 0 to ignore the input.

4.2. Cross-Dataset Generalization: From 1 Mpx to
DSEC

DSEC is a dataset that features event cameras and global
shutter cameras close to each other. Unlike the 1 Mpx
dataset [5] which was recorded mostly urban scenarios in
Paris, DSEC [2] provides recordings from urban and rural
regions in Switzerland. Furthermore, the event camera used
in the DSEC dataset is a Gen 3 prophesee event camera in-
stead of a Gen 4 camera as in the 1 Mpx dataset. In this
section, we qualitatively show that our model can be suc-
cessfully deployed in a different environment and using dif-
ferent event cameras.

We deploy RVT-B, trained on the 1 Mpx dataset , on sev-
eral sequences of the DSEC dataset to qualitatively assess
the cross-dataset generalization. While DSEC does not yet
provide object detection labels, we can visually assess the
quality of the detections by using the provided calibration
files to map the frames of the global shutter camera to the
event camera view.

Figure 1 and 2 show predictions of our model together
with the images closest in time to the detections. Figure 1
shows our model can successfully detect cars in mountain-
ous environments. In particular, Figure 1 (a) shows an HDR
scene where the global shutter frame is overexposed such
that the approaching car is barely visible. Due to the high
dynamic range of the event camera, our model can detect



the approaching car without any difficulty. Figure 2 features
more urban environments where our model also manages to
detect objects correctly.

Discussion of Failure Cases By and large, our model can
successfully detect objects on DSEC even though it has only
been trained on the 1 Mpx dataset. Still, we found failure
cases that might stem from distribution shift between the
datasets. For example, Figure 2 (c) shows the erroneous de-
tection of a two-wheeler that instead is a pillar on the street.

Overall, the model is good at detecting cars but is less
confident and accurate at detecting two-wheelers and pedes-
trians. This effect likely stems from the fact that the 1 Mpx
dataset has almost twice as many car labels as pedestrian
and two-wheeler labels combined.

5. Dataset Licenses
Gen1 [1] “Prophesee Gen1 Automotive Detection
Dataset License Terms and Conditions”: https://www.
prophesee.ai/2020/01/24/prophesee-gen1-
automotive-detection-dataset/

1 Mpx [5] “Prophesee 1MegaPixel Automotive Detec-
tion Dataset License Terms and Conditions”: https://

www.prophesee.ai/2020/11/24/automotive-
megapixel-event-based-dataset/

DSEC [2] “Creative Commons Attribution-ShareAlike
4.0 International public license (CC BY-SA 4.0)”: https:
//dsec.ifi.uzh.ch/

References
[1] Pierre de Tournemire, Davide Nitti, Etienne Perot, Davide

Migliore, and Amos Sironi. A large scale event-based detec-
tion dataset for automotive, 2020.

[2] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide
Scaramuzza. Dsec: A stereo event camera dataset for driving
scenarios. IEEE Robot. Autom. Lett., 2021.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 1997.

[4] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan
Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal Poupart.
Representation learning for dynamic graphs: A survey. J.
Mach. Learning Research (JMLR), 2020.

[5] Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan
Masci, and Amos Sironi. Learning to detect objects with a
1 megapixel event camera. In H. Larochelle, M. Ranzato, R.
Hadsell, M.F. Balcan, and H. Lin, editors, Conf. Neural Inf.
Process. Syst. (NeurIPS), 2020.



(a) (b) (c)

Figure 1. Prediction examples on the DSEC dataset featuring a mountainous environment. Frames are shown only for visualization
purposes and are not used by the model. Column (a) shows a typical high-dynamic range (HDR) scenario where the vehicle is exiting
a tunnel with a car approaching from outside the tunnel. The HDR capabilities of the event cameras enables our model to detect the
approaching car. Column (b) shows a scenario with a wet road and challenging reflections.

(a) (b) (c)

Figure 2. Prediction examples on the DSEC dataset featuring a (sub-)urban environments. Frames are shown only for visualization
purposes and are not used by the model. Column (a) illustrates a typical urban situation where pedestrians, two-wheelers, cars and other
road users occupy the street simultaneously. In column (c), we show a failure case of our model where a street pillar is erroneously detected
and classified as a two-wheeler.


