Event-aided Direct Sparse Odometry Javier Hidalgo-Carrió¹, Guillermo Gallego², Davide Scaramuzza¹ ^{1.}Dept. of Informatics, Univ. of Zurich and Dept. of Neuroinformatics, Univ. of Zurich and ETH Zurich ^{2.}Technische Universität Berlin, Einstein Center Digital Future and SCIoI Excellence Cluster, Germany. [Paper and code] https://rpg.ifi.uzh.ch/eds ## EDS: Event-aided Direct Sparse Odometry) (What is an event camera? is a direct monocular visual odometry method using events and frames. Our algorithm leverages the event generation model to track the camera motion in the blind time between frames. The method formulates a direct probabilistic approach of observed brightness increments. - Transmits brightness changes - Outputs asynchronous events # Methodology The camera tracking problem is a joint optimization of the normalized brightness increment error over the camera motion parameters (6DoF pose and velocity): $$(\delta T^*, \dot{T}^*) = \arg\min_{\delta T, \dot{T}} \left\| \frac{\Delta \hat{L}}{\|\Delta \hat{L}\|_2} - \frac{\Delta L}{\|\Delta L\|_2} \right\|_{\mathcal{L}}$$ - $\Delta \hat{L}$ is the event generation model (EGM) and ΔL the events $\Delta \hat{L}(\mathbf{u}) \approx -\nabla \hat{L}(\mathbf{u}) \cdot J(\mathbf{u}, d_{\mathbf{u}}) \dot{T} \Delta t$ and $\Delta \hat{L}(\mathbf{u}) = \sum w_k p_k C \delta(\mathbf{u} - \mathbf{u}_k)$ - In comparison to previous work [1,2], the optimization is done by transferring the brightness increments of a sparse set of points to the keyframe and finding the parameters of $\delta T^*, \dot{T}^*$ ### **Experiments** EDS w.r.t. event-based (left) and frame-based (right) methods. | | ESVO | USLAM | EVO | EDS (Ours) | | |---------|---------------------------------------|--|--|--|---| | Input | E+E | E+F+I | E | E+F |] | | bin | 2.8 | 7.7 | 13.2* | 1.1 | [cm] | | boxes | 5.8 | 9.5 | 14.2* | 2.1 | — ι | | desk | 3.2 | 9.8 | 5.2 | 1.5 | us. | | monitor | 3.3 | 6.5 | 7.8 | 1.0 | Trans. | | bin | 7.61 | 7.18 | 50.26* | 0.99 | | | boxes | 9.46 | 8.84 | 170.36* | 1.83 | $[\deg]$ | | desk | 7.25 | 32.46 | 8.25 | 1.87 | Rot. | | monitor | 2.74 | 7.01 | 7.77 | 0.60 | <u> </u> | | | bin boxes desk monitor bin boxes desk | Input E+E bin 2.8 boxes 5.8 desk 3.2 monitor 3.3 bin 7.61 boxes 9.46 desk 7.25 | Input E+E E+F+I bin 2.8 7.7 boxes 5.8 9.5 desk 3.2 9.8 monitor 3.3 6.5 bin 7.61 7.18 boxes 9.46 8.84 desk 7.25 32.46 | Input E+E E+F+I E bin 2.8 7.7 13.2* boxes 5.8 9.5 14.2* desk 3.2 9.8 5.2 monitor 3.3 6.5 7.8 bin 7.61 7.18 50.26* boxes 9.46 8.84 170.36* desk 7.25 32.46 8.25 | Input E+E E+F+I E E+F bin 2.8 7.7 13.2* 1.1 boxes 5.8 9.5 14.2* 2.1 desk 3.2 9.8 5.2 1.5 monitor 3.3 6.5 7.8 1.0 bin 7.61 7.18 50.26* 0.99 boxes 9.46 8.84 170.36* 1.83 desk 7.25 32.46 8.25 1.87 | | urs) | Input | ORB-SLAM
F+F | ORB-SLAM
F | DSO
F | ${ m DSO^{\dagger}} \ { m F^{\dagger}}$ | EDS (Ours)
E+F | |------|---|-----------------|---------------|----------|---|----------------------------| | | g bin | 0.7 | 2.4 | 1.1 | - | 1.1 | | | $\mathbf{E} \begin{array}{c} bin \\ boxes \end{array}$ | 1.6 | 3.9 | 2.0 | - | 2.1 | | | 🔅 desk | 1.8 | 3.8 | 10.0 | 1.6 | 1.5 | | | Lang
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Language
Languag | 0.8 | 3.1 | 0.9 | 2.1 | 1.0 | | | 50 bin | 0.58 | 0.84 | 2.12 | - | 0.99 | | | $\frac{1}{2}$ bin boxes | 4.26 | 2.39 | 2.14 | - | 1.83 | | | – , , | 2.81 | 2.52 | 63.5 | 1.80 | 1.87 | | | $\stackrel{\cdot}{\bowtie}$ desk monitor | 3.70 | 1.77 | 0.33 | 1.54 | 0.60 | Low frame rate experiments RPG Desk sequence at 20 fps 은 15.0 ORB-SLAM EDS (ours) DSO # **Sensitivity Study** ### Conclusion - EDS is the first direct visual odometry method combining events & frames. - EDS produces more accurate results than previous event-based methods. - Events improve classical photometric image alignment in frame tracking. - EDS opens the door to low-power motion-tracking applications. ### (References - [1] Samuel Bryner, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza, "Event-based, direct camera tracking from a photometric 3D map using nonlinear optimization," in IEEE Int. Conf. Robot. Autom. (ICRA), 2019. - [2] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza, "EKLT: Asynchronous photometric feature tracking using events and frames," Int. Journal of Computer Vision, 2019. - [3] Yi Zhou, Guillermo Gallego, Henri Rebecq, Laurent Kneip, Hongdong Li, and Davide Scaramuzza, "Semi-dense 3D reconstruction with a stereo event camera," in European Conf. in Computer Vision (ECCV), 2018.