

Event-aided Direct Sparse Odometry

Javier Hidalgo-Carrió¹, Guillermo Gallego², Davide Scaramuzza¹

^{1.}Dept. of Informatics, Univ. of Zurich and Dept. of Neuroinformatics, Univ. of Zurich and ETH Zurich ^{2.}Technische Universität Berlin, Einstein Center Digital Future and SCIoI Excellence Cluster, Germany.

[Paper and code] https://rpg.ifi.uzh.ch/eds

EDS: Event-aided Direct Sparse Odometry) (What is an event camera?

is a direct monocular visual odometry method using events and frames. Our algorithm leverages the event generation model to track the camera motion in the blind time between frames. The method formulates a direct probabilistic approach of observed brightness increments.

- Transmits brightness changes
- Outputs asynchronous events

Methodology

 The camera tracking problem is a joint optimization of the normalized brightness increment error over the camera motion parameters (6DoF pose and velocity):

$$(\delta T^*, \dot{T}^*) = \arg\min_{\delta T, \dot{T}} \left\| \frac{\Delta \hat{L}}{\|\Delta \hat{L}\|_2} - \frac{\Delta L}{\|\Delta L\|_2} \right\|_{\mathcal{L}}$$

- $\Delta \hat{L}$ is the event generation model (EGM) and ΔL the events $\Delta \hat{L}(\mathbf{u}) \approx -\nabla \hat{L}(\mathbf{u}) \cdot J(\mathbf{u}, d_{\mathbf{u}}) \dot{T} \Delta t$ and $\Delta \hat{L}(\mathbf{u}) = \sum w_k p_k C \delta(\mathbf{u} - \mathbf{u}_k)$
- In comparison to previous work [1,2], the optimization is done by transferring the brightness increments of a sparse set of points to the keyframe and finding the parameters of $\delta T^*, \dot{T}^*$

Experiments

EDS w.r.t. event-based (left) and frame-based (right) methods.

	ESVO	USLAM	EVO	EDS (Ours)	
Input	E+E	E+F+I	E	E+F]
bin	2.8	7.7	13.2*	1.1	[cm]
boxes	5.8	9.5	14.2*	2.1	— ι
desk	3.2	9.8	5.2	1.5	us.
monitor	3.3	6.5	7.8	1.0	Trans.
bin	7.61	7.18	50.26*	0.99	
boxes	9.46	8.84	170.36*	1.83	$[\deg]$
desk	7.25	32.46	8.25	1.87	Rot.
monitor	2.74	7.01	7.77	0.60	<u> </u>
	bin boxes desk monitor bin boxes desk	Input E+E bin 2.8 boxes 5.8 desk 3.2 monitor 3.3 bin 7.61 boxes 9.46 desk 7.25	Input E+E E+F+I bin 2.8 7.7 boxes 5.8 9.5 desk 3.2 9.8 monitor 3.3 6.5 bin 7.61 7.18 boxes 9.46 8.84 desk 7.25 32.46	Input E+E E+F+I E bin 2.8 7.7 13.2* boxes 5.8 9.5 14.2* desk 3.2 9.8 5.2 monitor 3.3 6.5 7.8 bin 7.61 7.18 50.26* boxes 9.46 8.84 170.36* desk 7.25 32.46 8.25	Input E+E E+F+I E E+F bin 2.8 7.7 13.2* 1.1 boxes 5.8 9.5 14.2* 2.1 desk 3.2 9.8 5.2 1.5 monitor 3.3 6.5 7.8 1.0 bin 7.61 7.18 50.26* 0.99 boxes 9.46 8.84 170.36* 1.83 desk 7.25 32.46 8.25 1.87

urs)	Input	ORB-SLAM F+F	ORB-SLAM F	DSO F	${ m DSO^{\dagger}} \ { m F^{\dagger}}$	EDS (Ours) E+F
	g bin	0.7	2.4	1.1	-	1.1
	$\mathbf{E} \begin{array}{c} bin \\ boxes \end{array}$	1.6	3.9	2.0	-	2.1
	🔅 desk	1.8	3.8	10.0	1.6	1.5
	Lang Language Languag	0.8	3.1	0.9	2.1	1.0
	50 bin	0.58	0.84	2.12	-	0.99
	$\frac{1}{2}$ bin boxes	4.26	2.39	2.14	-	1.83
	– , ,	2.81	2.52	63.5	1.80	1.87
	$\stackrel{\cdot}{\bowtie}$ desk monitor	3.70	1.77	0.33	1.54	0.60

 Low frame rate experiments RPG Desk sequence at 20 fps 은 15.0 ORB-SLAM EDS (ours) DSO

Sensitivity Study

Conclusion

- EDS is the first direct visual odometry method combining events & frames.
- EDS produces more accurate results than previous event-based methods.
- Events improve classical photometric image alignment in frame tracking.
- EDS opens the door to low-power motion-tracking applications.

(References

- [1] Samuel Bryner, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza, "Event-based, direct camera tracking from a photometric 3D map using nonlinear optimization," in IEEE Int. Conf. Robot. Autom. (ICRA), 2019.
- [2] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza, "EKLT: Asynchronous photometric feature tracking using events and frames," Int. Journal of Computer Vision, 2019.
- [3] Yi Zhou, Guillermo Gallego, Henri Rebecq, Laurent Kneip, Hongdong Li, and Davide Scaramuzza, "Semi-dense 3D reconstruction with a stereo event camera," in European Conf. in Computer Vision (ECCV), 2018.