
SCAMP-5: Vision Sensor
with Pixel Parallel SIMD Processor Array

Piotr Dudek
School of Electronic & Electrical Engineering

The University of Manchester

CVPR 2019 workshop, Long Beach, 17/06/2019

Embedded machine vision

Vision is hard…

Even if you got the algorithms that work,

often there is not enough CPU, GPU, battery.

Portable systems, interacting with environment in real-time

require TOPS performance @ mW of power

Image sensor, ADC

GPU

CPU

lots of data movement!

Vision System Hardware
Memory

Memory

Vision System Hardware

Vision Chip

Putting processing where the data is:

High performance (speed, latency, improved capabilities)

at much reduced system power, cost & size

low-power
microcontroller or low-
cost CPU

“Event Cameras”

• sparse, high-temporal resolution data extracted from images

• log-intensity changes (DVS, DAVIS, ATIS, Celex, etc.)

• are only one type of temporal feature

• and perhaps not always the most useful one…

• NB. Biology does a lot more on the retina!

• how about other spatial & temporal features?

e.g. events corresponding to moving edges,

corners, general convolution filters, etc.

• how about more complex information extraction?

e.g. object centroids, compressive sensing,

optical flow, tracking, visual odometry, neural net, etc…

• how can we construct a vision sensor that can do this all?

(Lichtsteiner et al, JSSC 2008)

spatio-temporal filtering at outputs

of different ganglion cell groups

(Werblin, Roska & Balya,

Prog Brain Res. 2001)

Early Vision – Pixel-Parallel Operations

j

k

a variety of tasks/algorithms:

• spatio-temporal filters, convolutions,

• segmentation, optic flow,

• background subtraction,

• adaptive/HDR mapping,

• feature/keypoint extraction,

• object localization & tracking

• CNNs, etc…

“you need a computer for that!”

NB. These tasks are compute intensive

because of the amount of data, many pixels!

• relatively simple operations,

• identical for each image pixel,

• localised (nearest neighbour)

PE PE PE PE PE PE PE PE

Massively Parallel SIMD Processor Array

Instructions

from the

controller

• All processors (PEs) perform
the same operation (Single Instruction)
operating on their local data (Multiple Data)

PE

PE

PE

PE

PE PE

PE

PE PE

PE

PE

PE

PE

PE PE

PE

PE PE

PE

PE

PE

PE

PE PE

PE

PE PE

PE

PE

PE

PE

PE PE

PE

PE PE

PE

PE

PE

PE

PE PE

PE

PE PE

PE

PE

PE

PE

PE PE

PE

PE PE

Massively Parallel SIMD Processor Array

Instructions

from the

controller

• All processors (PEs) perform
the same operation (Single Instruction)
operating on their local data (Multiple Data)

• The more parallel the better…

Massively Parallel SIMD Processor Array

Instructions

from the

controller

• All processors (PEs) perform
the same operation (Single Instruction)
operating on their local data (Multiple Data)

• The more parallel the better…

• Ultimate parallelism - one processor per one pixel !

INSIDE

/

Vision Sensor

Vision Sensor with Pixel Processor Array

SIMD Processor Array

extracted information
features, descriptors, parameters,

objects, locations, maps,

decisions, etc…

photodetector

processor

software instructions

Vision Sensor with Pixel Processor Array

REGISTERS

PIX

FLAG

I/O
&

NEWS

ALU

bus

Processing Element

(Carey, Lopich, Barr, Wang and Dudek, VLSI Symp 2013)

Parameter Value

No. of Processors 65,536

PE cell size 32um x 32um

Memory per PE 7 analog + 14 bits

Clock 10 MHz

Peak performance 655 GOPS

Power consumption 1.23 W (peak)

0.2 mW (idle)

Efficiency 535 GOPS/W

SCAMP-5 vision chip
256X256 Pixel Processor Array

in 180nm CMOS!

(20-yrs old tech)

SCAMP-5 Architecture

• Mixed analog/digital datapath

• Local memory 6 analog + 13 bits per PE

• Custom instruction set:
mov, add, sub, div, where-all, ...

• 256x256 processor array

• periphery: control, interface

(external sequencer)

• Random access I/O

- analog & binary

• Global I/O:
- block sum, block OR

• Pixel-driven I/O
- extracting active pixel addresses (events)

Scamp5c Smart Camera System

Host Processor
(Odroid, RaspberryPI, Arduino, etc…)
SCAMP Interface API
ROS interface
Host GUI, Code dev & Debugging on a PC

USBUART SPI

ARM Cortex M0

ARM Cortex M4

GPIO

136kB
RAM

512kB
FLASH

FPGA
(clocks)

Scamp5 Vision Chip

Bias,
DAC

ADC

#include <scamp5.hpp>

using namespace SCAMP5_PE;

int main(){

vs_init(); //initialise and configure interface

auto display_1 = vs_gui_add_display("result",0,0,2); //output channels

auto slider_1 = vs_gui_add_slider ("Count",0,5,2,&sliderCount); //parameters

while(1){

vs_process_message();

vs_wait_frame_trigger();

scamp5_kernel_begin();

get_image(C,D);

where(C);

add(A,E,C);

mov (C,F);

all();

scamp5_kernel_end();

for (int i=0; i<sliderCount; i++){

scamp5_kernel_begin();

mov(B,C,west);

add(C,B,C);

scamp5_kernel_end();

}

scamp5_output_image(B,display_1); //output via USB/API to external host

vs_loop_counter_inc();

}

return 0;}

Software Development Kit

Scamp5 System

Scamp Host
Scamp Sim Server

Visual Studio

LPCXpresso (Eclipse)

Recap – Pixel Processor Array

• each image pixel contains a processor

• processors are software-programmable
– they execute code

• all computations are done on the sensor
– in a pixel-parallel array

– no sensor/processor/memory data movements

– high speed & low power

• operation is “frame based”
– but the frame rate can be very high – many kHz

• Only interesting data is transmitted off chip
– results of computations,

– e.g. 2D maps, global measures,
address-events of points of interest,…

Example Basic Algorithms

Edge detector

execution time 5.8 s

Power @ 20 fps

(excluding I/O) :

340 W total,

i.e.5.2 nW/pixel

Median Filter

execution time 20.1 s

Power @ 20 fps

(excluding I/O) :

695 W total,

i.e.10.6 nW/pixel

Example Basic Algorithms

Optical Flow

• Block matching using L1-norm

• Determines best match

– moving a 5x5 kernel of pixels

– over a 5x5 grid

• Algorithm time ~0.4 ms

Corner detector

• FAST algorithm

• up to 480 fps with some gray-level

image output (1 bit per frame)

• up to 2000 fps when returning only

address-events (corner coordinates)

Time

X

Y

40ms(4096 frames)User selected frame returned

at N samples after trigger,

corresponds with closed

object coordinate

Image acquired by the

sensor array

CC

C

C

C O

Light

Source
Vision chip system

Wheel rotating at

15,000rpm

Object identification and tracking at 100,000 frames per second

+

• Identify object of interest 'O' amongst distractors 'C'

• Track the object - extract {x,y} coordinates

• 10 us timing resolution – 100,000 fps processing

• (6GBps raw image data rate upon which a non-trivial image
processing algorithms need to be executed)

S.J.Carey et al, ISCAS 2014

Offset, gain

Background

integration

Difference

& Adjust

Spatial Low Pass

Filter

Adaptive Threshold

Binary Filter

Event readout

Find Centres

Events

Example frames, running at 2000 fps

Particle tracker - microfluidics

(Berthelon & Dudek, unpublished)

J.Martel et al, ISCAS 2016
short exposure long exposure HDR (exposure per pixel)

High Dynamic Range (HDR)

Sensing
120dB dynamic range

• Tone-mapped, Composite frame

combines 100s of exposure times

• Computations during frame

integration - zero latency

“Sub-frame” computation

• Liquid lens oscillating at 25Hz

• Depth determined by max local
contract across focus sweep

• 32 levels @ 25 fps

• 800fps processing
sub-frames from one sweep “all in focus” image depth map

J.Martel et al, ISCAS 2017

Depth from Focus

Visual odometry

Agile Robotics

(Bose et. al ICCV 2017) (Greatwood et al. IROS 2018)

(Greatwood et al. IROS 2017)

Visual target tracking

see videos at https://sites.google.com/view/project-agile

High-speed slalom

(Liu et al. IROS 2019,submitted)

L.Bose et al., CVPR 2019

See our demo!

Convolutional Neural Networks (CNNs)

Ternary Convolution Layers

computed using parallel image operations:

addition(+1), subtraction(-1) and image shifting.

Max pooling Layers

multiple images are stored within a single

array using a checker boarding scheme

This is in
180 nm
CMOS…

28 nm analog
14 nm digital
chip stacking

Technology
state-of-the-art

ca. 1998

Roadmap

What Next…

Get in touch if you

would like to use

SCAMP-5 in your

application !

What Next…

Acknowledgements

People:

Manchester Team: Steve Carey, Jianing Chen, Alex Lopich, David Barr, …

Collaborators: Laurie Bose, Walterio Mayol-Cuevas, Yanan Liu, Colin

Greatwood, Tom Richardson, Lorenz Muller, Julien Martel, Xavier

Berthelon, …

+ others

Funding:

Project AGILE:

EPSRC (Engineering and Physical Sciences Research Council)

previous projects:

EPSRC, DSTL (MoD)

© 2019 by Piotr Dudek, The University of Manchester – pdudek@manchester.ac.uk

