SCAMP-5: Vision Sensor with Pixel Parallel SIMD Processor Array

Piotr Dudek

School of Electronic & Electrical Engineering
The University of Manchester
Vision is hard…

Even if you got the algorithms that work, often there is not enough CPU, GPU, battery.

Portable systems, interacting with environment in real-time require **TOPS** performance @ **mW** of power
Vision System Hardware

Image sensor, ADC

“lots of images”

lots of data movement!

GPU
CPU

Memory
Putting processing where the data is:

High performance (speed, latency, improved capabilities)
at much reduced system power, cost & size
“Event Cameras”

• sparse, high-temporal resolution data extracted from images

• log-intensity changes (DVS, DAVIS, ATIS, Celex, etc.)
 • are only one type of temporal feature
 • and perhaps not always the most useful one…
 • NB. Biology does a lot more on the retina!

• how about other spatial & temporal features?
 e.g. events corresponding to moving edges, corners, general convolution filters, etc.

• how about more complex information extraction?
 e.g. object centroids, compressive sensing, optical flow, tracking, visual odometry, neural net, etc…

• how can we construct a vision sensor that can do this all?

(Lichtsteiner et al, JSSC 2008)

spatio-temporal filtering at outputs of different ganglion cell groups

(Werblin, Roska & Balya, Prog Brain Res. 2001)
Early Vision – Pixel-Parallel Operations

a variety of tasks/algorithms:
• spatio-temporal filters, convolutions,
• segmentation, optic flow,
• background subtraction,
• adaptive/HDR mapping,
• feature/keypoint extraction,
• object localization & tracking
• CNNs, etc…
“you need a computer for that!”

NB. These tasks are **compute intensive**
because of the amount of data, many pixels!
• relatively *simple* operations,
• *identical* for each image pixel,
• *localised* (nearest neighbour)
Massively Parallel SIMD Processor Array

- All processors (PEs) perform the same operation (**Single Instruction**) operating on their local data (**Multiple Data**)
Massively Parallel SIMD Processor Array

- All processors (PEs) perform the same operation (*Single Instruction*) operating on their local data (*Multiple Data*)
- The more parallel the better...
• All processors (PEs) perform the same operation (Single Instruction) operating on their local data (Multiple Data)

• The more parallel the better...

• Ultimate parallelism - one processor per one pixel!
Vision Sensor with Pixel Processor Array
Vision Sensor with Pixel Processor Array

- Extracted information: features, descriptors, parameters, objects, locations, maps, decisions, etc...

- Software instructions

- SIMD Processor Array

- Photodetector

- Processor
Processing Element

PIX

ALU

I/O & **NEWS**

bus

FLAG

REGISTERS

```cpp
reg(B, C)

# sub.srtr(C, window_1)
A = copy(C)

s0 = sub.slider(slider_1)
sub(s0, 127) // will set the r carry flag if s0 < 127
jump(z, #begin_loop_shift_west)
jump(z, #end_loop_shift_west)

#begin_loop_shift_west
A = west(A)

sub(s0, 1)
jump(zs, #begin_loop_shift_east)
jump(zs, #end_loop_shift_east)

#begin_loop_shift_east
A = east(A)
```

```cpp
// output the original image
sub.srtr(C, window_1)

// fill A with -128 (darkest level)
A = in(-128)

// get the threshold value from the slider in the host UI
s0 = sub.slider(slider_1)

// calculate: E = C - D, after D is filled with our threshold value
D = in(s0)
E = sub(C, D)

// flag those PEs where
where(E)

// only those flag
where(E)

// fill A with 127
A = in(127)
```

```cpp
R11 = 0
R10 = 0

E = neg(C)
C = copy(E)
s0 = sub.slider(slider_0)
E = in(s0)
A = add(C, E)
call(#algorithm_FAST16_R9)

call(#algorithm_FAST16_R9)
```

// merge the two
SCAMP-5 vision chip
256X256 Pixel Processor Array

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Processors</td>
<td>65,536</td>
</tr>
<tr>
<td>PE cell size</td>
<td>32um x 32um</td>
</tr>
<tr>
<td>Memory per PE</td>
<td>7 analog + 14 bits</td>
</tr>
<tr>
<td>Clock</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Peak performance</td>
<td>655 GOPS</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.23 W (peak)</td>
</tr>
<tr>
<td></td>
<td>0.2 mW (idle)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>535 GOPS/W</td>
</tr>
</tbody>
</table>

in 180nm CMOS!
(20-yrs old tech)

(Carey, Lopich, Barr, Wang and Dudek, VLSI Symp 2013)
SCAMP-5 Architecture

- Mixed analog/digital datapath
- Local memory 6 analog + 13 bits per PE
- Custom instruction set:
 mov, add, sub, div, where-all, ...

- 256x256 processor array
- periphery: control, interface
 (external sequencer)

- Random access I/O
 - analog & binary
- Global I/O:
 - block sum, block OR
- Pixel-driven I/O
 - extracting active pixel addresses (events)
Scamp5c Smart Camera System

Scamp5 Vision Chip

ADC

FPGA (clocks)

Bias, DAC

136kB RAM

ARM Cortex M0

512kB FLASH

ARM Cortex M4

GPIO

UART

SPI

USB

Host Processor
(Odroid, RaspberryPI, Arduino, etc...)

SCAMP Interface API

ROS interface

Host GUI, Code dev & Debugging on a PC
#include <scamp5.hpp>
using namespace SCAMP5_PE;

int main()
{
 vs_init(); // initialise and configure interface
 auto display_1 = vs_gui_add_display("result", 0, 0, 2); // output channels
 auto slider_1 = vs_gui_add_slider ("Count", 0, 5, 2, &sliderCount); // parameters

 while(1){
 vs_process_message();
 vs_wait_frame_trigger();

 scamp5_kernel_begin();
 get_image(C, D);
 where(C);
 add(A, E, C);
 mov (C, F);
 all();
 scamp5_kernel_end();

 for (int i=0; i<sliderCount; i++){
 scamp5_kernel_begin();
 mov(B, C, west);
 add(C, B, C);
 scamp5_kernel_end();
 }

 scamp5_output_image(B, display_1); // output via USB/API to external host

 vs_loop_counter_inc();
 }

 return 0;
}
Software Development Kit

Visual Studio

Simulation Binary (EXE)

Scamp Simulation Library

Vision Algorithm in C/C++

LPC4357-M0 Binary (AXF)

Scamp5d Cortex-M0 Library

LPCXpresso (Eclipse)

Scamp Sim Server

Scamp Host

Scamp5 System
Recap – Pixel Processor Array

- each image pixel contains a processor
 - processors are software-programmable
 - they execute code
- all computations are done on the sensor
 - in a pixel-parallel array
 - no sensor/processor/memory data movements
 - high speed & low power
- operation is “frame based”
 - but the frame rate can be very high – many kHz
- Only interesting data is transmitted off chip
 - results of computations,
 - e.g., 2D maps, global measures, address-events of points of interest,…
Example Basic Algorithms

Edge detector
execution time 5.8 μs

Power @ 20 fps (excluding I/O):
340 μW total, i.e. 5.2 nW/pixel

input image | result (SCAMP-5) | result (MATLAB)
Example Basic Algorithms

Optical Flow

- Block matching using L1-norm
- Determines best match
 - moving a 5x5 kernel of pixels
 - over a 5x5 grid
- Algorithm time ~0.4 ms

Corner detector

- FAST algorithm
- up to 480 fps with some gray-level image output (1 bit per frame)
- up to 2000 fps when returning only address-events (corner coordinates)
Object identification and tracking at 100,000 frames per second

- Identify object of interest 'O' amongst distractors 'C'
- Track the object - extract \{x,y\} coordinates
- **10 us** timing resolution – 100,000 fps processing
- (6GBps raw image data rate upon which a non-trivial image processing algorithms need to be executed)

S.J.Carey et al, ISCAS 2014
Particle tracker - microfluidics

Example frames, running at 2000 fps

Event readout

Find Centres

Binary Filter

Adaptive Threshold

Spatial Low Pass Filter

Difference & Adjust

Background integration

Offset, gain

(Berthelon & Dudek, unpublished)
High Dynamic Range (HDR) Sensing
- 120dB dynamic range
 - Tone-mapped, Composite frame combines 100s of exposure times
 - Computations during frame integration - zero latency

Depth from Focus
- Liquid lens oscillating at 25Hz
- Depth determined by max local contract across focus sweep
 - 32 levels @ 25 fps
 - 800fps processing
Agile Robotics

Visual odometry

(Bose et. al ICCV 2017)

(Greatwood et al. IROS 2018)

Visual target tracking

(Greatwood et al. IROS 2017)

High-speed slalom

(Liu et al. IROS 2019, submitted)

see videos at https://sites.google.com/view/project-agile
Convolutional Neural Networks (CNNs)

See our demo!

L. Bose et al., CVPR 2019

Ternary Convolution Layers
computed using parallel image operations: addition(+1), subtraction(-1) and image shifting.

Max pooling Layers
multiple images are stored within a single array using a checker boarding scheme.
Roadmap

28 nm analog
14 nm digital
chip stacking

This is in
180 nm
CMOS...

Technology
state-of-the-art
ca. 1998
What Next...
What Next...

Get in touch if you would like to use SCAMP-5 in your application!
Acknowledgements

People:
Manchester Team: Steve Carey, Jianing Chen, Alex Lopich, David Barr, …
Collaborators: Laurie Bose, Walterio Mayol-Cuevas, Yanan Liu, Colin Greatwood, Tom Richardson, Lorenz Muller, Julien Martel, Xavier Berthelon, …
+ others

Funding:
Project AGILE:
EPSRC (Engineering and Physical Sciences Research Council)

previous projects:
EPSRC, DSTL (MoD)