MANCHESTER

1824

The University of Manchester

SCAMP-5: Vision Sensor
with Pixel Parallel SIMD Processor Array

Piotr Dudek

School of Electronic & Electrical Engineering
The University of Manchester

CVPR 2019 workshop, Long Beach, 17/06/2019

Embedded machine vision

Vision is hard...

Even if you got the algorithms that work,
often there is not enough CPU, GPU, battery.

Portable systems, interacting with environment in real-time
require TOPS performance @ mW of power

Vision System Hardware

Memory
Image sensor, ADC m

Memory

Vision System Hardware

Vision Chip

% low-power
microcontroller or low-
cost CPU

Putting processing where the data is:
High performance (speed, latency, improved capabilities)
at much reduced system power, cost & size

“Event Cameras” Driving Scene

~4000 Events in 29 ms

* sparse, high-temporal resolution data extracted from images

* log-intensity changes (DVS, DAVIS, ATIS, Celex, etc.)
« are only one type of temporal feature
« and perhaps not always the most useful one...
* NB. Biology does a lot more on the retina!

(Lichtseiner et al, JSSC 2008)

spatio-temporal filtering at outputs
of different ganglion cell groups

-
- =

* how about other spatial & temporal features?

e.g. events corresponding to moving edges,
corners, general convolution filters, etc.

* how about more complex information extraction?
e.g. object centroids, compressive sensing, c
optical flow, tracking, visual odometry, neural net, etc...

(Werblin, Roska & Balya,
Prog Brain Res. 2001)

* how can we construct a vision sensor that can do this all?

Early Vision — Pixel-Parallel Operations

a variety of tasks/algorithms:

* spatio-temporal filters, convolutions, ' o
- segmentation, optic flow, ' g L8
» background subtraction, d
 adaptive/HDR mapping,

- feature/keypoint extraction,

* object localization & tracking

* CNNs, etc...

“you need a computer for that!”

NB. These tasks are compute intensive
because of the amount of data, many pixels! j T
e relatively simple operations,

e /dentical for each image pixel,
* Jocalised (nearest neighbour)

Massively Parallel SIMD Processor Array

PE

PE

PE

PE

PE

PE

PE

Instructions
from the
controller

e All processors (PEs) perform

the same operation (Single Instruction)

operating on their local data (Multiple Data)

Massively Parallel SIMD Processor Array

PE+-| PE || PE || PEL| PE || PEL-| PEL| PE || PE |-

PE |+| PE |~+| PE |+| PE |-| PE |+| PE4~+| PE || PE || PE |~

Instructions
PE || PE |~| PE |+ PE |-| PE |-| PE4~| PE |-| PE || PE |- from the

! ! I i I I I I controller

PE{-| PE |-| PE | PEL.| PE |-| PE{+| PE{~]| PE || PE |-

PE |-| PE |+| PE | PE }»| PE |-~| PE4—| PE || PE || PE |~

PE |-| PE |-| PE | PE |-| PE || PE4~| PE|-| PE |-| PE |-

e All processors (PEs) perform
the same operation (Single Instruction)
operating on their local data (Multiple Data)

e The more parallel the better...

Massively Parallel SIMD Processor Array

Instructions
from the
controller

PE |+ PE 4-| PE || PE{ PE 4 PE PE PE |~| PE+=| PE - PE || PE |~ PE 4-| PE PE 4—| PE 4 PE PE
I i]] 1 { i I { i I 1 { 1 i I [{
PE |+ PE || PE || PE{+| PE || PE || PE || PE || PE{~| PE || PE || PE || PE || PE }-| PE{~| PE || PE [~| PE
! { i] 1 { i | i i ! 1 { 1 ! ! i {
PE |+ PE PE || PE { PE PE PE PE |- | PE 4 PE PE || PE |+ PE || PE PE4-| PE PE PE
] { i] l { { { {] 1 l i I I] { !
.| PE |~ PE {~| PE }~| PE{~| PE {~| PE }-| PE |~| PE || PE4~| PE{~| PE || PE |+| PE4~| PE |~| PE {~| PE {~| PE || PE
1 i ! 1 I i { { i] I I I I I 1 { !
.| PE |+ PE |~| PE |-+| PE{~| PE || PE || PE |~| PE || PE{~| PE || PE }~| PE || PE || PE |~| PE{~| PE || PE |-| PE
! ! !] ! | { | ! } ! l i | !] t !
.| PE |~ PE PE |-| PE{ PE PE PE PE |~ | PE 4 PE PE |~| PE |~+| PE |~| PE PE {~| PE PE PE
1 { i 1 ! i { { { l 1] i ! i 1 { i
PE |~ PE - PE |-| PE+ PE A PE PE PE |- | PE 4 PE 4 PE |-| PE |+ PE4-| PE PE 4—| PE 4 PE PE
! { ! i i] ! i] i { { { { ! ! i !
PE |+ PE PE (~| PE PE PE PE PE |~ | PE { PE PE |+| PE |+ PE [~| PE PE 3—| PE PE PE
! { I ! i] i 1] { ! ! { { ! ! 1 {
| PE | PE PE |-| PE A PE PE PE PE |~ PE 4 PE PE |~| PE |+ PE |-| PE PE 4+-| PE PE PE
e All processors (PEs) perform
the same operation (Single Instruction)
operating on their local data (Multiple Data)
e The more parallel the better... INSIDE
o

Ultimate parallelism - one processor pgr one pixel !

Vision Sensor with Pixel Processor Array

Vision Sensor

Vision Sensor with Pixel Processor Array

photodetector

Processor

SIMD Processor Array

_ software instructions
extracted information
features, descriptors, parameters,
objects, locations, maps,
decisions, etc...

rpix (B, C)

(C,window 1

A = copy(C)

Processing Element

B | | | | |
Nl 0l Sl 0
IElE e e IEIE I

HFEIFIEIEEIFIE
J(Rp gy (uy N EpEpE

SCAMP-5 vision chip
256X256 Pixel Processor Array

ANNAAAMAARAAAAAA //4//// ’.
[———— o | Parameter Value
, S — No. of Processors 65,536
il L = PE cell size 32um x 32um
Memory per PE 7 analog + 14 bits
Clock 10 MHz
Peak performance 655 GOPS
Power consumption 1.23 W (peak)
0.2 mW (idle)
Efficiency 535 GOPS/W

in 180nm CMOS!
(20-yrs old tech)

(Carey, Lopich, Barr, Wang and Dudek, VLSI Symp 2013)

SCAMP-5 Architecture

Mixed analog/digital datapath
Local memory 6 analog + 13 bits per PE

Custom instruction set:
mov, add, sub, div, where-all,

256x256 processor array
periphery: control, interface
(external sequencer)

Random access I/O
- analog & binary
Global I/O:
- block sum, block OR
Pixel-driven I/O
- extracting active pixel addresses (events)

N local write bus N
6 13b digital bus neighbour | \\/ E
analogue DRAM controller |/O &
registers registers analogue
(RO to R12) register S
1 J, local read bus T o A
/d b N N E
y 8/d bus 4 . 2 o
7) 7) M_
\ 4 A 4
2 comp- flag pixel global & squarer
c arator SRAM . PE-
@, > o N
S N addressed
I/O
S
| Clks 1-6 | @
Analog register control drivers = =
SREIEE
of\a 5
> 5
g\ S
@ 5
» & g
e < ||
‘g % 256x256 Sensor/Processor Array
O oo
52
v @ =
2 55 S=
R c 2
T © o o
25 S,
28

Analog register error compensation. Data In.

Column addressing/ Column AER

[8-bit data register| D_ai | Col/Addr. Decode | [>
<3 o

. S B
8-bitdata 5 Sbitaddr @

o =N L i :

Scamp5c Smart Camera System

Scamp5 Vision Chip

Bias,
DAC
ADC ks) FPGA
(clocks)
A A
v N Z
NV
136kB ARM Cortex MO
RAM
ARM Cortex M4
512kB
FLASH GPIO | UART | spi | uUSB

—

Host Processor

(Odroid, RaspberryPl, Arduino, etc...)
SCAMP Interface API

ROS interface

Host GUI, Code dev & Debugging on a PC

#include <scamp5.hpp>
using namespace SCAMP5 PE;

int main () {

vs_init(); //initialise and configure interface
auto display 1 = vs gui add display("result",0,0,2); //output channels
auto slider 1 = vs gui add slider ("Count",0,5,2,&sliderCount); //parameters

while (1) {

Vs process message () ;

vs walt frame trigger();
/ scamp5 kernel begin();
l get image (C,D);

i where (C) ;

i add (A, E,C);

7
/

mov (C,F);
all ();

— e —————————

\

S o e e e e e E—— -

o e e e e e e e e e e e e e e e e

scamp5_kernel begin();
mov (B, C, west) ; l
add (C,B,C) ; i
. scamp5 kernel end(); /

7
I
1
1
1
1
1
1
1

}
scamp5 output image (B,display 1); //output via USB/API to external host

vs loop counter inc();

}

return 0;}

Software Development Kit

Visual Studio Scamp

Simulation _
Library LPCXpresso (Eclipse)

b < LPCA3ST-M) [———

Vision
Algorithm in
C/C++
Simulation .
Binary (EXE)

Scampbd
Cortex-M0O
Library J

S Sim S
camp >Im >ETVer Scamp Host

readout: 2

image gisplay blend: 16

proxy started on:

Scamp5 System

Recap — Pixel Processor Array

each image pixel contains a processor

processors are software-programmable
— they execute code

all computations are done on the sensor
— in a pixel-parallel array
— Nno sensor/processor/memory data movements
— high speed & low power

operation is “frame based”
— but the frame rate can be very high — many kHz

Only interesting data is transmitted off chip
— results of computations,

— e.g. 2D maps, global measures,
address-events of points of interest,...

o 256x256 sensor and
opticalinput ... SIMD processor array

" Processing
Element

Vision
Chip

vy

software processing results,

(instructions) maps, features, etc...

iInput image

Example Basic Algorithms

result (SCAMP-35)

Edge detector
execution time 5.8 us

Power @ 20 fps
(excluding 1/O) :
340 uW total,

l.e.5.2 nW/pixel

result (MATLAB)

Example Basic Algorithms

Optical Flow

® Block matching using L1-norm

* Determines best match
— moving a 5x5 kernel of pixels
— over a 5x5 grid

* Algorithm time ~0.4 ms

Corner detector

« FAST algorithm

* up to 480 fps with some gray-level
Image output (1 bit per frame)

* up to 2000 fps when returning only
address-events (corner coordinates)

Object identification and tracking at 100,000 frames per second

Wheel rotating at
Q 15,000rpm

Light
Source

Vision chip system

Image acquired by the
sensor array

* Identify object of interest 'O’ amongst distractors 'C'
« Track the object - extract {x,y} coordinates
e 10 us timing resolution — 100,000 fps processing

« (6GBps raw image data rate upon which a non-trivial image
processing algorithms need to be executed)

S.J.Carey et al, ISCAS 2014

MANCHESTER

SORBONNE
1824

i
bt UNIVERSITE
The University of Manchester

Particle tracker - microfluidics

Offset, gain : : +
® file:///C:/Users/mchsspjd/Dropbox%20(The%2 X St 7. &

---------------- S S

Background
integration

Difference
& Adjust

35k

Spatial Low Pass
Filter

30k

\ 4 25k

Adaptive Threshold

o

20k

timestamp
15k

10k

_____ \ 4
5k -

Binary Filter
0

\ 4
150

Find Centres

150 y

Export to plot.ly »

200

- v
50

Event readout
N

(Berthelon & Dudek, unpublished)

\ 4

Events

Example frames, running at 2000 fps

“Sub-frame” computation ETH ziirich

The University of Manchester

High Dynamic Range (HDR)
Sensing

120dB dynamic range

» Tone-mapped, Composite frame
combines 100s of exposure times

« Computations during frame
integration - zero latency

J.Martel et al, ISCAS 2016

Depth from Focus

Liquid lens oscillating at 25Hz

Depth determined by max local
contract across focus sweep

32 levels @ 25 fps
800fps processing

sub-frames from one sweep “all in focus” image

J.Martel et al, ISCAS 2017

Elic University of

Agile Robotics University of
Visual odometry MANCHESTER
" Ly Spneec The University of Manchester

GB8EIEENE

Yaw Rate
(degrs)

P T T T
BHRERBRSAESS

” Time“(s)) . SCAMP Sensor
(Bose et. al ICCV 2017) (Greatwood et al. IROS 2018)
Visual target tracking High-speed slalom

first person perspective

(Liu et al. IROS 2019,submitted)

(Greatwood et al. IROS 2017) _ _ _ _ _
see videos at https://sites.gooqgle.com/view/project-agile

Convolutional Neural Networks (CNNs) - A

See our demo!
L.Bose et al., CVPR 2019

il b
LM
M 3 R
manE 0 Eans

Ternary Convolution Layers
computed using parallel image operations:

addition(+1), subtraction(-1) and image shifting.

MANCHESTER
1824

The University of Manchester

333333EaaEEI
355552729073 SEEE
255 eey

Max pooling Layers
multiple images are stored within a single
array using a checker boarding scheme

Roadmap 28 nm analog
14 nm digital

chip stacking

SCAMP-5

This is in
no. of processors . i 180 nm
cMOS... Technology
5‘ state-of-the-art
10,000 ; 128“28;; e ca. 1998

1998 2000 2002 2004 i 2006 2008 2010 2012 2014 2016 2018

What Next...

What Next...

Get In touch If you
would like to use
SCAMP-5 in your
application !

| = Acknowledgements

[he University of Manchester

People:

Manchester Team: Steve Carey, Jianing Chen, Alex Lopich, David Barr, ...

Collaborators: Laurie Bose, Walterio Mayol-Cuevas, Yanan Liu, Colin
Greatwood, Tom Richardson, Lorenz Muller, Julien Martel, Xavier
Berthelon, ...

+ others
Funding:
Project AGILE:

EPSRC (Engineering and Physical Sciences Research Council)

previous projects:
EPSRC, DSTL (MoD)

© 2019 by Piotr Dudek, The University of Manchester — pdudek@manchester.ac.uk

