Industrial DVS Design; Key Features and Applications

Hyunsurk Eric Ryu, PhD System LSI, Samsung Electronics

Outline

- Samsung S.LSI Dynamic Vision Sensor
- ☐ Key Features
 - Low Latency
 - Minimized Motion Artifacts
 - Anti-Flicker
 - Low Power Operation
- Applications
 - Sparse Edge-based Object Recognition
 - Pose Estimation with Visual Information: DVS-*SLAM

*SLAM: Simultaneous Localization and Mapping

Summary and Discussion

DVS Gen1 (R&D Ver., 2014)

- Brief Specifications
 - 640 x 480 Pixel Array with 1/2.5-inch optics
 - Pixel size : 9 um
 - Dynamic range : 66 dB (5~10,000 Lux)
 - Max. event processing rate: 6.5 Meps* *eps: event per second
 - Minimum detectable contrast (50% response)
 - : < 19%
 - Interface : 20-bit Parallel
 - Typical power consumption: 15 mW
- Key Features
 - Small pixel size (9 um)

- ☐ Full custom logic design
- □ Fabricated using the Samsung 90-nm Back Side Illumination (BSI) CIS process

DVS Gen2 (R&D Ver., 2016)

Brief Specifications

■ 640 x 480 Pixel Array with 1/2.5-inch optics

■ Pixel size: 9 um

Dynamic range : 90 dB (3~100,000 Lux)

Max. event processing rate : 300 Meps

Minimum detectable contrast (50% response): < 19%

- Interface: MIPI(1Gbps 4-lane), USB connectable Parallel, I²C
- Typical power consumption: 80 mW
- Key Features
 - Standard digital I/F IP supported
 - Digitally synthesized G-AER* for high throughput

*G-AER: Group Address Event Representation

☐ High data throughput using digitally synthesized G-AER scheme

DVS Gen3 (Product Ver., 2018)

- Brief Specifications
 - 640 x 480 Pixel Array with 1/2.5-inch optics
 - Pixel size : 9 um
 - Dynamic range : 90 dB (3~100,000 Lux)
 - Effective frame rate : > 2,000 fps (MIPI)
 - Minimum detectable contrast (99.9% response)
 - : < 27.5%
 - Interface : MIPI(1Gbps 4-lane), USB connectable Parallel, I²C
 - Typical power consumption: 65 mW
- Key Features
 - Global hold, Global reset, Column scan readout
- ☐ Motion image artifact minimized by using global hold and global reset
- ☐ Timestamp error minimized by applying sequential column scan readout

DVS Gen4 (R&D Ver.)

- Brief Specifications
 - 1280 x 960 Pixel Array with 1/2-inch optics
 - Pixel size : 4.95 um
 - Dynamic range : 90 dB (3~100,000 Lux)
 - Frame rate: fixed 1,000 fps (MIPI)
 - Minimum detectable contrast (99.9% response)
 - : < 27.4%
 - Typical power consumption: 140 mW
- Key Features
 - Pixel circuit split using two-stack wafer bonding
 - 2nd CCI supported, CIS RGB Format, De-noise, Anti-Flicker
- Pixel circuit split by using two-stack wafer bonding for smaller pixel size
- Event signal processing block (Anti-flicker, De-noise, etc.) added

DVS Gen2 Results, only valid for small events

DVS Scene Characteristics

Hyunsurk Eric Ryu Industrial DVS Design 8 of 27

Event Probability

Hyunsurk Eric Ryu Industrial DVS Design 9 of 27

Artifacts and delay by unfair arbitration

unfair arbitration

Hyunsurk Eric Ryu Industrial DVS Design 10 of 27

Fast column sequential read

Event scanning with a capacitor event memory

AER induced latency

- ☐ Original AER handles the individual pixel data with address, polarity, and event generation time.
- ☐ Group addressing reduces the latency by the interface bandwidth limitation

DVS with Event-Group Handshaking Readout

Hyunsurk Eric Ryu Industrial DVS Design 12 of 27

AER induced motion artifact

□ Image artifact could be induced by the mismatch between event generation time and readout time under high event rate condition

Global Hold, Global Reset

- ☐ Global hold is implemented with an event storage in each pixel and its global control signal
- ☐ To minimize unwanted tail event, global pixel-reset function is applied

Imbedded Anti-Flicker

Shaking Hand before Flickering Monitor

Walking person (AF @non-flickering environment)

Low Power Operation

Activity Detection

Spatial Histogram

One patch comprises 32x32 pixel array

DVS Human Detection

■ Recognition with securing privacy

Hyunsurk Eric Ryu

Smaller Database and Faster Training

□ 1M-labeled VGA data set, 2.5x faster training and easy converging

Total 850K images (11 categories) are used for network training.

Hyunsurk Eric Ryu Industrial DVS Design 18 of 27

Algorithm Flow

☐ C++ based Caffe v1 with CPU only mode (no CUDA lib)

DVS event pre-process

☐ Use historic event timestamp of DVS sensor to compensate the sparsity issue.

Deep learning Based Human detection

- Faster Region Convolutional Neural Network (FRCNN)
- ☐ Calculate the position of objects and classify objects.

Spatial and temporal voting

Fusion different detection results to improve accuracy.

Human Detection in Edge Device (ARMv8 Board)

□ 92ms @ Exynos 7570, 2 cores (60%)

	Distance	≥ 10 lux	5 ~ 10 lux
Recall	0.5 ~ 1.0m	98%	96%
	1.0 ~ 5.0m	99%	98%
	5.0 ~ 7.0m	96%	92%
False Alarm Rate (FAR)		19	%

Accuracy Test

FAR Test

Smaller Network with DVS Images

- Sparsity and binary features of DVS images
 - Few kernel numbers
 - Few convolutional layers
 - Large stride for layers in the front
- Small and fast network without accuracy degradation.

FRCNN+FPN	# of *Layers	*FLOPs	Processing Time (ms)
CIS-based	91	5.8G	172
DVS-based	24	81M	15

*backbone network

CIS

DVS

→ ~11.4x speed up

**computed on Titan X

- DVS-Based human detection solution (smart home/IoT)
 - Computational speed: 140ms/frame @Exynos 7570(1.4GHz, 8% CPU usages)

DVS SLAM

- VO/VIO/VI-SLAM Algorithms
 - Track location of device in unknown environment
 - Use visual and inertial sensors
- Challenges with standard image sensors
 - Lack robustness to fast motion (blur)
 - Lack robustness to HDR (loss of features)
 - High latency (VR & AR, fast control loops)
- DVS intrinsic properties deal with these challenges naturally

Durrant-Whyte, Bailey: "Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms"

D. Scaramuzza, "Visual Odometry and SLAM: past, present, and the robust-perception age"

DVS-SLAM Algorithm

Hyunsurk Eric Ryu Industrial DVS Design 23 of 27

DVS-SLAM Video

DVS-SLAM provides robust tracking even at high-speed motions, thanks to high frame rate (>1000 FPS), sophisticated processing, low computing load with DVS signal characteristics.

Measured Performances

Comparison with a CIS Platform (May 2019)

	DVS-SLAM		A CIS Solution	
	Average	Median	Average	Median
Last Position Error (cm)	3.2	2.7	130	125
AAPE (cm)	2.7	2.3	45.4	39.8
Relative Drift Error (%)	0.28%	0.24%	13.61%	12.6%
Relative AAPE (%)	0.25%	0.16%	4.96%	4.02%

Hyunsurk Eric Ryu Industrial DVS Design 25 of 27

DVS+CIS SLAM

□ DVS + CIS: best of both worlds?

- DVS provides low latency visual sensing, robustness to fast motion & HDR
- CIS provides precise long term feature tracking, loop closure
 & re-localization ability

■ Sample performance of hybrid DVS+CIS SLAM on "The Event-Camera Dataset":

Scenario	VINS CIS Only AAPE [m]	VINS CIS + DVS AAPE [m]
boxes_6dof	0.29	0.26
boxes_translation	0.09	0.07
hdr_boxes	0.18	0.16
poster_6dof	0.29	0.19
poster_translation	0.02	0.03
dynamic_translation	0.04	0.02
shapes_6dof	0.62	0.49

Summary and discussion

- There were several design changes for the latency, motion artifact, low power operation, smaller pixel size operation, etc.
- DVS based visual recognition shows fewer and faster NN without loss of classification accuracy.
- DVS SLAM shows robustness when the motion is fast, and/or for the high dynamic range scene. DVS with CIS provides better performance than DVS or CIS only cases.
- Remaining issues and research topics
 - bandwidth minimization for higher event rate and spatial resolution
 - improving the pixel sensitivity (response time) at dark illumination condition
 - A way of high level visual information processing combined with SLAM information