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Abstract

Event cameras are novel sensors that report brightness

changes in the form of asynchronous “events” instead of

intensity frames. They have significant advantages over

conventional cameras: high temporal resolution, high dy-

namic range, and no motion blur. Since the output of event

cameras is fundamentally different from conventional cam-

eras, it is commonly accepted that they require the devel-

opment of specialized algorithms to accommodate the par-

ticular nature of events. In this work, we take a differ-

ent view and propose to apply existing, mature computer

vision techniques to videos reconstructed from event data.

We propose a novel recurrent network to reconstruct videos

from a stream of events, and train it on a large amount

of simulated event data. Our experiments show that our

approach surpasses state-of-the-art reconstruction meth-

ods by a large margin (> 20%) in terms of image qual-

ity. We further apply off-the-shelf computer vision algo-

rithms to videos reconstructed from event data on tasks

such as object classification and visual-inertial odometry,

and show that this strategy consistently outperforms algo-

rithms that were specifically designed for event data. We

believe that our approach opens the door to bringing the

outstanding properties of event cameras to an entirely new

range of tasks. A video of the experiments is available at

https://youtu.be/IdYrC4cUO0I

1. Introduction

Event cameras are bio-inspired vision sensors that work

radically differently from conventional cameras. Instead of

capturing intensity images at a fixed rate, event cameras

measure changes of intensity asynchronously at the time

they occur. This results in a stream of events, which encode

the time, location, and polarity (sign) of brightness changes

(Fig. 2). Event cameras such as the Dynamic Vision Sensor

(DVS) [25] possess outstanding properties when compared

to conventional cameras. They have a very high dynamic

range (140 dB versus 60 dB), do not suffer from motion
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Figure 1. Our network converts a spatio-temporal stream of events

(left) into a high-quality video (right). This enables direct ap-

plication of off-the-shelf computer vision algorithms such as ob-

ject classification (Section 5.1) and visual-inertial odometry (Sec-

tion 5.2), yielding state-of-the-art results with event data in each

case. This figure shows an actual output sample from our method,

operating on a real event sequence from a publicly available

dataset [31].

blur, and provide measurements with a latency as low as

one microsecond. Event cameras thus provide a viable al-

ternative, or complementary, sensor in conditions that are

challenging for conventional cameras.

However, since the output of an event camera is an asyn-

chronous stream of events (a representation that is funda-

mentally different from natural images), existing computer

vision techniques cannot be directly applied to this data. As

a consequence, custom algorithms need to be specifically

tailored to leverage event data. Such specialized algorithms

have demonstrated impressive performance in applications

ranging from low-level vision tasks, such as visual odom-

etry [18, 40, 55, 39, 43], feature tracking [20, 54, 15] and

optical flow [5, 3, 49, 57, 48], to high-level tasks such as ob-

ject classification [36, 21, 47] and gesture recognition [2].

While some works [9, 10, 5, 30, 18, 14] focused on ex-

ploiting the low latency of the sensor by processing the data

event-by-event, significant progress has been made by map-

ping a set of events into an image-like 2D representation

prior to processing. Examples are the integration of events

on the image plane [40, 27, 28] as well as time surfaces

[21, 47, 57, 53, 57]. However, neither event images nor time

surfaces are natural images, meaning that much of the exist-

ing computer vision toolbox cannot be applied effectively.

Most importantly, deep networks trained on real image data
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cannot be directly transferred to these representations.

In this paper, we propose to establish a bridge between

vision with event cameras and conventional computer vi-

sion. Specifically, we learn how to reconstruct natural

videos from a stream of events (“events-to-video”), i.e. we

learn a mapping between a stream of events and a stream of

images (Fig. 1). This allows us to apply off-the-shelf com-

puter vision techniques to event cameras.

Our work differs from previous image reconstruction ap-

proaches [3, 32, 45] in two essential ways. First, instead of

embedding handcrafted smoothness priors into our recon-

struction framework, we directly learn video reconstruction

from events using a large amount of simulated event data.

Second, instead of focusing mainly on the quality of the re-

constructions, we build our approach with the goal of apply-

ing standard computer vision techniques to the reconstruc-

tions. To this end, we encourage the reconstructed images

to share the statistics of natural images through a perceptual

loss that operates on mid-level image features.

To further validate the quality of our approach, we use

our reconstructions to solve two popular problems with

event cameras: (i) object classification from a stream of

events, and (ii) visual-inertial odometry. We apply off-the-

shelf computer vision algorithms that were built to process

conventional images to the reconstructed videos for both

tasks. We show that this strategy outperforms state-of-the-

art methods that had been specifically designed for event

data.

In summary, our contributions are:

• A novel recurrent network architecture to reconstruct

a video from a stream of events, which outperforms

the state-of-the-art in terms of image quality by a large

margin.

• We establish that the network can be trained from sim-

ulated event data and generalizes remarkably well to

real events.

• The application of our method to two problems with

event cameras: object classification and visual-inertial

odometry from event data. Our method outperforms

state-of-the-art algorithms designed specifically for

event data in both applications.

We believe that the most alluring characteristic of our

method is that it acts as a bridge between conventional cam-

eras and event cameras, thus bringing the main stream of

computer vision research to event cameras: mature algo-

rithms, modern deep network architectures, and weights

pretrained from large natural image datasets. We believe

that our work will open the door to leveraging the benefits

of event cameras – high temporal resolution, high dynamic

range (Fig. 6), and no motion blur (Fig. 9) – to a broader

array of applications.

2. Related Work

Events-to-video reconstruction is a popular topic in the

event camera literature. Early approaches did not recon-

struct videos, but focused on the reconstruction of a sin-

gle image from a large set of events collected by an event

camera moving through a static scene. These works ex-

ploit the fact that every event provides one equation relat-

ing the intensity gradient and optic flow through brightness

constancy [15]. Cook et al. [10] used bio-inspired, inter-

connected networks to simultaneously recover intensity im-

ages, optic flow, and angular velocity from an event cam-

era performing small rotations. Kim et al. [17] developed

an Extended Kalman Filter to reconstruct a 2D panoramic

gradient image (later upgraded to a full intensity frame by

2D Poisson integration) from a rotating event camera, and

later extended it to a 3D scene and 6 degrees-of-freedom

(6DOF) camera motion [18] (albeit in a static scene only).

Bardow et al. [3] proposed to estimate optic flow and inten-

sity simultaneously from sliding windows of events through

a variational energy minimization framework. They showed

the first video reconstruction framework from events that is

applicable to dynamic scenes. However, their energy mini-

mization framework requires multiple hand-crafted regular-

izers, which can result in severe loss of detail in the recon-

structions.

Recently, methods based on direct event integration have

emerged. These approaches do not rely on any assump-

tion about the scene structure or motion dynamics, and can

naturally reconstruct videos at arbitrarily high framerates.

Munda et al. [32] cast intensity reconstruction as an energy

minimization problem defined on a manifold induced by the

event timestamps. They combined direct event integration

with total variation regularization and achieved real-time

performance on the GPU. Scheerlinck et al. [45] proposed

to filter the events with a high-pass filter prior to integration,

and demonstrated video reconstruction results that are qual-

itatively comparable with [32] while being computationally

more efficient. While these approaches currently define the

state-of-the-art, both suffer from artifacts which are inher-

ent to direct event integration. The reconstructions suffer

from “bleeding edges” caused by the fact that the contrast

threshold (the minimum brightness change of a pixel to trig-

ger an event) is neither constant nor uniform across the im-

age plane. Additionally, pure integration of the events can

in principle only recover intensity up to an unknown initial

image I0, which causes “ghosting” effects where the trace

of the initial image remains visible in the reconstructed im-

ages.

Barua et al. [4] proposed a learning-based approach

to reconstruct intensity images from events. They used

K-SVD [1] on simulated data to learn a dictionary that maps

small patches of integrated events to an image gradient and

used Poisson integration to recover the intensity image. In
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Figure 2. Comparison of the output of a conventional camera and

an event camera looking at a black disk on a rotating circle. While

a conventional camera captures frames at a fixed rate, an event

camera transmits the brightness changes continuously in the form

of a spiral of events in space-time (red: positive events, blue: neg-

ative events). Figure inspired by [30].

contrast to [4], we do not reconstruct individual intensity

images from small windows of events, but instead recon-

struct a temporally consistent video from a long stream of

events (several seconds) using a recurrent network. Instead

of mapping event patches to a dictionary of image gradients,

we learn pixel-wise intensity estimation directly.

Despite the body of work on events-to-video reconstruc-

tion, further downstream vision applications based on the

reconstructions have, to the best of our knowledge, never

been demonstrated prior to our work.

3. Video Reconstruction Approach

An event camera consists of independent pixels that re-

spond to changes in the spatio-temporal brightness signal

L(x, t)1 and transmit the changes in the form of a stream of

asynchronous events (Fig. 2). For an ideal sensor, an event

ei = (ui, ti, pi) is triggered at pixel ui = (xi, yi)
T and

time ti when the brightness change since the last event at

the pixel reaches a threshold ±C, which can be fixed by the

user. However, C is in reality neither constant nor uniform

across the image plane. Instead, it strongly varies depend-

ing on various factors, such as the sign of the brightness

change [14], the event rate (because of limited pixel band-

width) [8], and the temperature [25]. Consequently, events

cannot by directly integrated to recover accurate intensity

images in practice.

3.1. Overview

Our goal is to translate a continuous stream of events

into a sequence of images {Îk}, where Îk ∈ [0, 1]
W×H

.

To achieve this, we partition the incoming stream of events

into sequential (non-overlapping) spatio-temporal windows

of events εk = {ei}, for i ∈ [0, N − 1], each containing a

fixed number N of events. For each new event sequence εk,

we generate a new image Îk by fusing the K previous re-

constructed images {Îk−K , ..., Îk−1} with the new events

1Event cameras respond in fact to logarithmic brightness changes, i.e.

L = logE where E is the irradiance.
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Îk−2
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Îk

A A

εk−1 εk

te
k−1

0
e
k−1

N−1
e
k
N−1

e
k
N−1

e
k
N−1

e
k
0e
k
0e
k
0e
k
0e

k−1

i

εk−1 εk

te
k−1

0
e
k−1

N−1
e
k
N−1

e
k
N−1

e
k
N−1

e
k
0e
k
0e
k
0e
k
0e

k−1

i

Figure 3. Overview of our approach. The event stream (depicted

as red/blue dots on the time axis) is split into windows εk with N

events in each. Each window is converted into a 3D event tensor

Ek and passed through the network together with the last K re-

constructed images to generate a new image reconstruction Îk. In

this example, K = 3 and N = 7.

εk (see Fig. 3). The reconstruction function is implemented

by a recurrent convolutional neural network. We train the

network in supervised fashion, using a large quantity of sim-

ulated event sequences with corresponding ground-truth im-

ages. Because we process windows with a constant number

of events, the output framerate is proportional to the event

rate, making our approach fully data-driven. While our

method introduces some latency due to processing events

in windows, it nonetheless captures the major advantages

of event cameras: our reconstructions have a high dynamic

range (Fig. 6) and are free of motion blur, even at high

speeds (Fig. 9).

3.2. Event Representation

In order to be able to process the event stream us-

ing a CNN, we need to convert εk into a fixed-size ten-

sor representation Ek. A natural choice is to encode the

events in a spatio-temporal voxel grid [58]. The duration

∆T = tkN−1
− tk0 spanned by the events in εk is discretized

into B temporal bins. Every event distributes its polarity pi
to the two closest spatio-temporal voxels as follows:

E(xl, ym, tn) =
∑

xi=xl

yi=ym

pi max(0, 1− |tn − t∗i |), (1)

where t∗i , B−1

∆T
(ti − t0) is the normalized event times-

tamp. We use N = 25,000 events per window and B = 10
temporal bins, unless specified otherwise.

3.3. Training Data

Our network requires training data, i.e. a large amount

of event sequences with corresponding ground-truth image

sequences. Formally, if we let ES = {E0, ...,ET−1} be

a sequence of event tensors, and I
S = {I0, ..., IT−1} be

the corresponding sequence of images, we need to generate

a large dataset of mappings
{

E
S ↔ I

S
}

. However, there

exists no such large-scale dataset with event data and cor-

responding ground-truth images. Furthermore, images ac-

quired by a conventional camera would provide poor ground



truth in scenarios where event cameras excel, namely high

dynamic range and high-speed scenes. For these reasons,

we propose to train the network on synthetic event data,

and show subsequently that our network generalizes to real

event data in Section 4.

We use the event simulator ESIM [38], which allows

simulating a large amount of event data reliably. ESIM ren-

ders images along the camera trajectory at high framerate,

and interpolates the brightness signal at each pixel to ap-

proximate the continuous intensity signal needed to simu-

late an event camera. Consequently, ground-truth images

I are readily available. We map MS-COCO images [26]

to a 3D plane, and simulate the events triggered by random

camera motion within this simple 3D scene. Examples of

generated synthetic event sequences are presented in the ap-

pendix. We enrich the training data by simulating a differ-

ent set of positive and negative contrast thresholds for each

simulated scene (sampled according to a normal distribution

with mean 0.18 and standard deviation 0.03; these param-

eters were chosen based on empirical data). This prevents

the network from learning to simply integrate events, which

would work on noise-free, simulated data, but would gener-

alize poorly to real event data (for which the assumption of

a fixed contrast threshold does not hold). The camera sen-

sor size is set to 240 × 180 pixels (to match the resolution

of the DAVIS240C sensor [7] used in our evaluation). Us-

ing MS-COCO images allows capturing a much larger vari-

ety of scenes than is available in any existing event cam-

era dataset. We generate 1,300 sequences of 2 seconds

each, which results in approximately 45 minutes of simu-

lated event data. Note that the simulated sequences contain

only globally homographic motion (i.e. there is no indepen-

dent motion in the simulated sequences). Nevertheless, our

network generalizes surprisingly well to scenes with arbi-

trary motions, as will be shown in Section 4.

3.4. Network Architecture and Training

The main module of our recurrent network is a UNet [42]

architecture similar to the one introduced by Zhu et al. [57]

in the context of optical flow estimation. The input ten-

sor (obtained by concatenating Ek, Îk−K , ..., Îk−1), of size

(B +K)×H×W , is passed through 4 strided convolution

layers (the number of output channels doubling each time),

followed by two residual blocks [16] and four upsampling

transposed convolution layers. The resulting activation is

convolved depthwise to obtain a final image reconstruction.

Following [57], we use skip connections between symmet-

ric convolution layers. Additional details of the architecture

are provided in the appendix. On top of this basic module

(labeled “A” in Fig. 3), we introduce a recurrent connec-

tion to propagate intensity information forward in time; in

other words, the network does not need to reconstruct a new

image from scratch at every time step, but only to incre-

mentally update the previous reconstructions using the new

sequence of events. During training we unroll the network

for L steps. At test time, the preceding K reconstructed im-

ages are fed into the network (Fig. 3). We found that L = 8
and K = 3 provide a good trade-off between reconstruction

quality and training time.

Loss: We use the calibrated perceptual loss (LPIPS) [51],

which passes the reconstructed image and the target image

through a VGG network [46] trained on ImageNet [44],

and averages the distances between VGG features com-

puted across multiple layers. By minimizing LPIPS, our

network effectively learns to endow the reconstructed im-

ages with natural statistics (i.e. with features close to those

of natural images). The total loss Lk is computed as

Lk =
∑L

l=0
dL(Îk−l, Ik−l), where dL denotes the LPIPS

distance.

Training Procedure: We split the synthetic sequences

into 1,270 training sequences and 30 validation sequences,

and implement our network using PyTorch [35]. We use

ADAM [19] with an initial learning rate of 0.0001, subse-

quently decayed by a factor of 0.9 every 10 epochs. We use

a batch size of 16 and train for 40 epochs.

4. Evaluation

In this section, we present both quantitative and qualita-

tive results on the fidelity of our reconstructions, and com-

pare to recent methods [3, 32, 45]. We focus our evaluation

on real event data. An evaluation on synthetic data can be

found in supplementary material.

We use event sequences from the Event Camera

Dataset [31]. These sequences were recorded using a

DAVIS240C sensor [7] moving in various environments. It

contains events as well as ground-truth grayscale frames at a

rate of 20Hz. We remove the redundant sequences (e.g. that

were captured in the same scene) and those for which the

frame quality is poor, leaving seven sequences in total that

amount to 1,670 ground-truth frames. For each sequence,

we reconstruct a video from the events with our method and

each baseline. For each ground truth frame, we query the re-

constructed image with the closest timestamp to the ground

truth (tolerance of ±1ms).

Each reconstruction is then compared to the correspond-

ing ground-truth frame according to several quality metrics.

We equalize the histograms of every ground-truth frame

and reconstructed frame prior to computing the error met-

rics (this way the intensity values lie in the same intensity

range and are thus comparable). Note that the camera speed

gradually increases in each sequence, leading to significant

motion blur on the ground-truth frames towards the end of

the sequences; we therefore exclude these fast sections in



(a) Scene overview (b) Events (c) HF (d) MR (e) Ours (f) Ground truth

Figure 4. Comparison of our method with MR and HF on sequences from [31]. Our network reconstruct fine details well (textures in the

first row) compared to the competing methods, while avoiding their artifacts (e.g. the “bleeding edges” in the third row).

our quantitative evaluation. We also omit the first few sec-

onds from each sequence, which leaves enough time for the

baseline methods that are based on event integration to con-

verge. Note that this works in favor of the baselines, as

our method converges almost immediately (the initializa-

tion phase is analyzed in the supplementary material).

We compare our approach against several state-of-the-

art methods: [3] (which we denote as SOFIE for “Simulta-

neous Optic Flow and Intensity Estimation”), [45] (HF for

“High-pass Filter”), and [32] (MR for “Manifold Regular-

ization”). For HF and MR, we used the code that was pro-

vided by the authors and manually tuned the parameters on

the evaluated sequences to get the best results possible. For

HF, we also applied a bilateral filter to the reconstructed im-

ages (with filter size d = 5 and σ = 25) in order to remove

high-frequency noise, which improves the results of HF in

all metrics. For SOFIE, we report qualitative results instead

of quantitative results since we were not able to obtain sat-

isfying reconstructions on our datasets using the code pro-

vided by the authors. We report three image quality met-

rics: mean squared error (MSE; lower is better), structural

similarity (SSIM; higher is better) [50], and the calibrated

perceptual loss (LPIPS; lower is better) [51].

Results and Discussion: The main quantitative results are

presented in Table 1, and are supported by qualitative results

in Figs. 4 and 5. Additional results are available in the sup-

plementary material. We also encourage the reader to watch

the supplementary video, which conveys these results in a

better form than still images can.

On all datasets, our reconstruction method outperforms

the state-of-the-art by a large margin, with an average 21%

increase in SSIM and a 23% decrease in LPIPS. Quali-

(a) Events (b) SOFIE (c) HF (d) MR (e) Ours

Figure 5. Qualitative comparison on the dataset introduced by [3].

Our method produces cleaner and more detailed results.

tatively, our method reconstructs small details remarkably

well compared to the baselines (see the boxes in the first

row of Fig. 4, for example). Furthermore, our method does

not suffer from “ghosting” or “bleeding edges” artifacts that

are present in other methods (particularly visible in the third

row of Fig. 4). These artifacts result from (i) incorrectly es-

timated contrast thresholds and (ii) the fact that these meth-

ods can only estimate the image intensity up to some un-

known initial intensity I0, whose ghost can remain visible.

We also compare our method to HF, MR, and SOFIE qual-

itatively using datasets and image reconstructions directly

provided by the authors of [3], in Fig. 5. Once again, our

network generates higher quality reconstructions, with finer

details and less noise. Finally, we show that our network is

able to leverage the outstanding properties of events to re-

construct images in low light (Fig. 6) and during high speed

motions (Fig. 9), two scenarios in which conventional cam-

eras fail.

Limitations: Our method introduces some latency due to

the fact that we process events in windows as opposed to



Dataset
MSE SSIM LPIPS

HF MR Ours HF MR Ours HF MR Ours

dynamic 6dof 0.10 0.11 0.08 0.39 0.44 0.50 0.53 0.53 0.43

boxes 6dof 0.09 0.07 0.04 0.45 0.47 0.63 0.51 0.54 0.36

poster 6dof 0.06 0.05 0.04 0.52 0.55 0.68 0.44 0.50 0.32

shapes 6dof 0.11 0.14 0.10 0.34 0.43 0.44 0.63 0.64 0.53

office zigzag 0.09 0.06 0.05 0.36 0.43 0.50 0.54 0.55 0.44

slider depth 0.08 0.08 0.06 0.48 0.51 0.61 0.50 0.55 0.42

calibration 0.07 0.06 0.04 0.41 0.41 0.52 0.55 0.57 0.47

Mean 0.09 0.08 0.06 0.42 0.46 0.56 0.53 0.55 0.42

Table 1. Comparison to state-of-the-art image reconstruction methods on the Event Camera Dataset [31]. Our approach outperforms prior

such methods on all datasets by a large margin, with an average 21% increase in structural similarity (SSIM) and a 23% decrease in

perceptual distance (LPIPS) compared to the best prior methods, respectively MR [32] and HF [45].

(a) VI Sensor (b) Events (c) Our reconstruction

Figure 6. A high-dynamic-range reconstruction from an event

camera mounted on a car driving at night [56]. Because of low

light, the conventional camera image is severely degraded (a). In

contrast, the events (b) capture the whole dynamic range of the

scene, which our method successfully converts into an image (c),

recovering details that are lost in the conventional frame.

(a) (b) (c) (d)

Figure 7. An example failure case on a sequence from the MVSEC

dataset [56]. The sun (top left of (a)) generates noisy events which

cause our network to make a local reconstruction error (b), which

gets amplified in subsequent reconstructions (c,d).

event-per-event [45], ranging from 1ms to 200ms depend-

ing on the event rate and value of N (details in the ap-

pendix). Also, in some cases (extreme electronic noise in

the events not modelled in simulation), our method can fail

to reconstruct correctly some parts of the images, and may

propagate the error to the next reconstructions (Fig. 7).

5. Downstream Applications

In this section, we demonstrate the potential of our

method as a bridge between conventional computer vision

and vision with event cameras, for both low-level and high-

level tasks. First, we focus on object classification from

events (Section 5.1) and then turn to camera pose estima-

tion with events and inertial measurements (Section 5.2).

5.1. Object Classification

Pattern recognition from event data is an active research

topic.2. While one line of work focuses on spiking neural

architectures (SNNs) to recognize patterns from a stream

of events with minimal latency (H-FIRST [34]), conven-

tional machine learning techniques combined with novel

event representations such as time surfaces (HOTS [21])

have shown the most promising results so far. Recently,

HATS [47] addressed the problem of object classification

from a stream of events. They proposed several modifica-

tions to HOTS, and achieved large improvements in classi-

fication accuracy, outperforming all prior approaches by a

large margin.

We propose an alternative approach to object classifica-

tion based on a stream of events. Instead of using hand-

crafted event representations, we directly train a classifica-

tion network on images reconstructed from events.

We compare our approach against several recent meth-

ods: HOTS, and the state-of-the-art HATS, using the

datasets and metric (classification accuracy) used in the

HATS paper. The N-MNIST (Neuromorphic-MNIST) and

N-Caltech101 datasets [33] are event-based versions of the

MNIST [22] and Caltech101 [12] datasets. To convert the

images to event sequences, an event camera was placed on

a motor, and automatically moved while pointing at images

from MNIST (respectively Caltech101) that were projected

onto a white wall. The N-CARS dataset [47] proposes a

binary classification task: deciding whether a car is visible

or not using a 100ms sequence of events. Fig. 8 shows a

sample event sequence from each of the three datasets.

Our approach follows the same methodology for each

dataset. First, for each event sequence in the training

set, we use our network to reconstruct an image from the

2A list of related works can be found at: https://github.com/

uzh-rpg/event-based_vision_resources

https://github.com/uzh-rpg/event-based_vision_resources
https://github.com/uzh-rpg/event-based_vision_resources


(a) N-MNIST (b) N-CARS (c) N-Caltech101

Figure 8. Samples from each dataset used in the evaluation of our

object classification approach based on events (Section 5.1). Top:

preview of the event sequence. Bottom: our image reconstruction.

N-MNIST N-CARS N-Caltech101

HOTS 0.808 0.624 0.210

HATS/linear SVM 0.991 0.902 0.642

HATS/ResNet-18 n.a. 0.904 0.700

Ours (transfer learning) 0.807 n.a. 0.821

Ours (fine-tuned) 0.983 0.910 0.866

Table 2. Classification accuracy compared to recent approaches,

including HATS [47], the state-of-the-art.

events (Fig. 8, bottom row). Then, we train an off-the-shelf

CNN for object classification using the reconstructed im-

ages from the training set. For N-MNIST, we use a simple

CNN (details in the supplement) and train it from scratch.

For N-Caltech101 and N-CARS, we use ResNet-18 [16],

initialized with weights pretrained on ImageNet [44], and

fine-tune the network for the dataset at hand. Once trained,

we evaluate each network on the test set (images recon-

structed from the events in the test set) and report the clas-

sification accuracy. Furthermore, we perform a transfer

learning experiment for the N-MNIST and N-Caltech101

datasets (for which corresponding images are available for

every event sequence): we train the CNN on the conven-

tional image datasets, and evaluate the network directly on

images reconstructed from events without fine-tuning.

For the baselines, we report directly the accuracy pro-

vided in [47]. To make the comparison with HATS as fair as

possible, we also provide results of classifying HATS fea-

tures with a ResNet-18 network (instead of the linear SVM

used originally). The results are presented in Table 2, where

the datasets are presented in increasing order of difficulty

from left to right. Despite the simplicity of our approach, it

outperforms all baselines, and the gap between our method

and the state-of-the-art increases as the datasets get more

difficult. While we perform slightly worse than HATS on N-

MNIST (98.3% versus 99.1%), this can be attributed to the

synthetic nature of N-MNIST, for which our approach does

not bring substantial advantages compared to a hand-crafted

feature representation such as HATS. Note that, in contrast

to HATS, we did not perform hyperparameter tuning. On

N-CARS (binary classification task with natural event data),

(a) DAVIS frame (b) Our reconstruction

Figure 9. Comparison of DAVIS frames and reconstructed frames

on a high-speed portion of the ‘dynamic 6dof’ sequence. Our re-

constructions from events do not suffer from motion blur, which

leads to increased pose estimation accuracy (Table 3).

our method performs better, though the improvement is mi-

nor (91% versus 90.4% for HATS). However, N-CARS is

almost saturated in terms of accuracy.

On N-Caltech101 (the most challenging dataset, requir-

ing classification of natural event data into 101 object

classes), our method truly shines, outperforming HATS by

a large margin (86.6% versus 70.0%). This significant gap

can be explained by the fact that our approach leverages

decades of computer vision research and datasets. Lifting

the event stream into the image domain with our events-to-

video approach allows us to use a mature CNN architecture

pretrained on existing large, labeled datasets, thus leverag-

ing powerful hierarchical features learned on a large amount

of image data – something that is not possible with event

data, for which labeled datasets are scarce. Finally, and per-

haps even more strikingly, we point out that our approach,

in the pure transfer learning setup (i.e. feeding images re-

constructed from events to a network trained on real image

data) performs better than all other methods, while not using

the event sequences from the training set. To the best of our

knowledge, this is the first time that direct transfer learning

between image data and event data has been achieved.

We also point out that our approach is real-time capa-

ble. On N-Caltech101, end-to-end classification takes less

than 10ms (sequence reconstruction: ≤8ms, object classi-

fication: ≤ 2ms) on an NVIDIA RTX 2080 Ti GPU. More

details about performance can be found in the appendix.

5.2. VisualInertial Odometry

The task of Visual-inertial odometry (VIO) is to recover

the 6-degrees-of-freedom (6-DOF) pose of a camera from

a set of visual measurements (images or events) and iner-

tial measurements from an inertial measurement unit (IMU)

that is rigidly attached to the camera. Because of its impor-

tance in augmented/virtual reality and mobile robotics, VIO

has been extensively studied in the last decade and is rela-

tively mature today [29, 23, 6, 13, 37]. Yet systems based on

conventional cameras fail in challenging conditions such as

high-speed motions or high-dynamic-range environments.

This has recently motivated the development of VIO sys-

tems with event data (EVIO) [55, 39, 43].



Ours U.SLAM U.SLAM HF MR VINS-Mono

Inputs E+I E+I E+F+I E+I E+I F+I

shapes translation 0.18 0.32 0.17 failed 2.00 0.93

poster translation 0.05 0.09 0.06 0.49 0.15 failed

boxes translation 0.15 0.81 0.26 0.70 0.45 0.22

dynamic translation 0.08 0.23 0.09 0.58 0.17 0.13

shapes 6dof 1.09 0.09 0.06 failed 3.00 1.99

poster 6dof 0.12 0.20 0.22 0.45 0.17 1.99

boxes 6dof 0.62 0.41 0.34 1.71 1.17 0.94

dynamic 6dof 0.15 0.27 0.11 failed 0.55 0.76

hdr boxes 0.34 0.44 0.37 0.64 0.66 0.32

Mean 0.31 0.32 0.19 0.76 0.92 0.91

Median 0.15 0.27 0.17 0.61 0.55 0.84

Table 3. Mean translation error (in meters) on the sequences

from [31]. Our method outperforms all other methods that use

events and IMU, including UltimateSLAM (E+I). Surprisingly, it

even performs on par with UltimateSLAM (E+F+I), while not us-

ing additional frames. Methods for which the mean translation

error exceeds 5m are marked as “failed”.

The state-of-the-art EVIO system, UltimateSLAM [43],

operates by independently tracking visual features from

pseudo-images reconstructed from events and optional im-

ages from a conventional camera, and fusing the tracks with

inertial measurements using an existing optimization back-

end [23]. Here, we go one step further and directly ap-

ply an off-the-shelf VIO system (specifically, VINS-Mono

[37], which is state-of-the-art [11]) to videos reconstructed

from events using either our approach, MR, or HF, and eval-

uate against UltimateSLAM. As is standard [55, 39, 43],

we use sequences from the Event Camera Dataset [31],

which contain events, frames, and IMU measurements from

a DAVIS240C [7] sensor. Each sequence is 60 seconds

long, and contains data from a hand-held event camera un-

dergoing a variety of motions in several environments. All

sequences feature extremely fast motions (angular velocity

up to 880 ◦/s and linear velocity up to 3.5m/s), which leads

to severe motion blur on the frames (Fig. 9). We compare

our approach against the two operating modes of UltimateS-

LAM: UltimateSLAM (E+I) which uses only events and

IMU, and UltimateSLAM (E+F+I) that uses the events, the

IMU, and additional frames. We run a publicly available

VIO evaluation toolbox [52] on raw trajectories provided

by the authors of UltimateSLAM, which ensures that the

trajectories estimated by all methods are evaluated in the

exact same manner. For completeness, we also report re-

sults from running VINS-Mono directly on the frames from

the DAVIS sensor.

Table 3 presents the mean translation error of each

method, for all datasets (additional results are presented

in the supplement). First, we note that our method per-

forms better than UltimateSLAM (E+I) on all sequences,

with the exception of the ‘shapes 6dof’ sequence. This se-

quence features a few synthetic shapes with very few fea-

tures (≤ 10), which cause VINS-Mono to not properly ini-

tialize, leading to high error (note that this is a problem with

VINS-Mono and not our image reconstructions). Overall,

the median error of our method is 0.15m, which is almost

twice smaller than UltimateSLAM (E+I) (0.27m), which

uses the exact same data. Indeed, while UltimateSLAM

(E+I) uses coarse pseudo-images created from a single,

small window of events, our network is able to reconstruct

images with finer details, and higher temporal consistency

– both of which lead to better feature tracks, and thus bet-

ter pose estimates. Even more strikingly, our approach per-

forms on par with UltimateSLAM (E+F+I), while the latter

requires additional frames which we do not need. The me-

dian error of both methods is comparable (0.15m for ours

versus 0.17m for UltimateSLAM (E+F+I)).

Finally, we point out that running the same VIO (VINS-

Mono) on competing image reconstructions (MR and HF)

leads to significantly larger tracking errors (e.g. median er-

ror three times as large for MR), which further highlights

the superiority of our image reconstructions for downstream

vision applications. We acknowledge that our approach is

not as fast as UltimateSLAM. Since the main difference

between both approaches is how they convert events into

“image-like” representations, a rough estimate of the per-

formance gap can be obtained by comparing the time it

takes for each method to synthesize a new image: Ulti-

mateSLAM takes about 1ms on a CPU, in comparison to

≤ 4ms on a high-end GPU for our method. Neverthe-

less, our events-to-video network allows harnessing the out-

standing properties of events for VIO, reaching even higher

accuracy than state-of-the-art EVIO designed specifically

for event data.

6. Conclusion

We presented a novel events-to-video reconstruction

framework based on a recurrent convolutional network

trained on simulated event data. In addition to outperform-

ing state-of-the-art reconstruction methods on real event

data by a large margin (> 20% improvement), we showed

the applicability of our method as a bridge between conven-

tional cameras and event cameras on two vision applica-

tions, namely object classification from events and visual-

inertial odometry. For each of these tasks, we applied an

off-the-shelf computer vision algorithm to videos recon-

structed from events by our network, and showed that the

result outperforms state-of-the-art algorithms tailored for

event data in each case. This validates that our approach

allows to readily apply decades of computer vision research

to event cameras: mature algorithms, modern deep archi-

tectures, and weights pretrained from large image datasets.
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A. Architecture Details

Our reconstruction network is presented in detail in

Fig. 10. It is essentially a UNet architecture [42], composed

of multiple convolutional layers. Four encoder layers (blue)

are followed by two residual blocks (yellow), four decoder

layers (red), and a final image prediction layer. In addi-

tion, symmetric skip connections are used. The encoders

are strided convolutional layers (stride of 2), with a kernel

size of 5. The number of output channels of the first en-

coder layer (↓conv1) is 64, and is doubled for every sub-

sequent encoder layer, i.e. the sequence of output channels

is (64, 128, 256, 512). Both residual blocks have 512 hid-

den layers, and a kernel size of 3. Batch normalization is

used within the residual blocks (applied before the activa-

tion). The decoders are transposed convolution layers, with

a kernel size of 5. The number of output channels of the

decoders starts at 256 (↑conv1), and is divided by two for

every subsequent decoder, i.e. the sequence of output chan-

nels is (256, 128, 64, 32)). The kernel size for the residual

blocks is 3. ReLU is used as activation everywhere, except

for the last image prediction layer, where a sigmoid acti-

vation is used instead. The skip connections are based on

concatenation.

B. Initialization Phase

By analyzing the initialization phase (i.e. when only few

events have been triggered yet) in detail we gain interesting

insight into how our network operates. We see significantly

different behaviour when compared to prior approaches that

are based on direct event integration. Fig. 11 compares im-

age reconstructions from our approach, HF, and MR during

the initialization phase. We specifically examine the inter-

val from 0 s to 0.5 s after the event cameras has been started.

HF and MR, which rely on event integration, can only

recover the intensity up to the initial (unknown) image I0
(i.e. they can only recover Î ≈ I − I0), which results in

an “edge” image which does not capture the appearance of

the scene correctly. In contrast, our method successfully

leverages deep priors to reconstruct the scene despite the

low number of events that is available.

By contrast, our method is able to leverage deep priors on

what a scene might look like (learned, first, from the large

amount of simulated event data, and second, embedded in

the perceptual loss used (LPIPS)) to reconstruct the scene

reasonably well even with a low number of events.

C. Why Use Synthetic Training Data?

Here, we expand on the reasons that motivated us to train

our reconstruction network using synthetic event data. First,

simulation allows to capture a large variety of scenes and

motions at very little cost. Second, a conventional camera

(even a high quality one) would provide poor ground truth

in high-speed conditions (motion blur) and HDR scenes,

which are the conditions in which event sensors excel; by

contrast, synthetic data does not suffer from these issues.

Last but not least, simulation allows to randomize the con-

trast thresholds of the event sensor, which increases the abil-

ity of the network to generalize to different sensor configu-

rations (contrast sensitivity). To illustrate this last point, we

show in Fig. 12 (left) what happens when training the net-

work on real event data from an event camera (specifically,

the sequences from the Event Camera Dataset [31] already

presented in the main paper, which were recorded with a

DAVIS240C sensor), and evaluating the trained network on

data coming from a different event sensor (specifically, the

‘outdoors day1‘ sequence from the MVSEC dataset [56],

which was recorded with a mDAVIS346 sensor): the re-

construction suffers from many artefacts. This can be ex-

plained by the fact that the events from the mDAVIS346

sensor have statistics that are quite different from the train-

ing events (DAVIS240C): the set of contrast thresholds are

likely quite different between both sensors, and the illumi-

nation conditions are also different (outdoor lighting for the

MVSEC dataset versus indoor lighting for the training event

data). By contrast, the network trained on simulated event

data (Fig. 12, right) generalizes well to the event data from

the mDAVIS346, producing a visually pleasing image re-

construction.

D. Latency and Performance Considerations

D.1. Latency

Our method operates on windows containing a fixed

number of events, which incurs some latency compared to

approaches that operate in an event-by-event fashion. The

amount of latency depends on the duration of the event win-

dows. Therefore, it varies through time, depending on the

event rate. Since we process events in windows with a con-

stant number of events, our method is data-driven, which

means that the latency diminishes when the event rate in-

creases, i.e. when something of interest occurs in the scene.

Fig. 13 shows the distribution of the latency (in other words,

the durations of the event windows) for the sequences used

in our qualitative evaluation (Section 4 in the main paper):

the latency is in the range of 3ms to 300ms, with a me-

dian value of 26ms. We point out that while in this paper

we chose to process windows with a fixed number of events,

our methodology could also be applied to windows of a con-

stant duration (which would require, however, to retrain the

network to operate with such fixed-length windows), yield-

ing a constant, predictable latency, but at the cost of losing

the adaptive output framerate.



↓conv1 ↓conv2 ↓conv3 ↓conv4 res1 res2 ↑conv1 ↑conv2 ↑conv3 ↑conv4 predinput output

(B+K) x H x W 1 x H x W

Figure 10. Detailed architecture of our reconstruction network. It is a UNet architecture [42], composed of multiple convolutional layers.

Four encoder layers (blue) are followed by two residual blocks (yellow), four decoder layers (red), and a final image prediction layer. In

addition, symmetric skip connections are used. More details about each layer are provided in the text.

(a) HF (b) MR (c) Ours (d) Ground truth

Figure 11. Analysis of the initialization phase (reconstruction from few events). This figure shows image reconstructions from each method,

0.5 seconds after the sensor was started. HF [45] and MR [32], which are based on event integration, cannot recover the intensity correctly,

but only the intensity difference , resulting in “edge ” images (first and second row), or severe “ghosting” effects (third row, where the trace

of the dartboard is clearly visible). In contrast, our network successfully reconstructs most of the scene accurately, even with a low number

of events.

Figure 12. Reconstruction from (i) a network trained only on real

event data from the DAVIS240C sensor (left), and (ii) a network

trained only on simulated event data (right). This sequence is from

the MVSEC dataset, and was recorded with a mDAVIS346 sensor.

D.2. Performance Analysis

In this section, we analyze the performance of our

method, and compare it against HF [45] and MR [32]. Due

to fundamental differences in the way each of these meth-

ods process event data, it is difficult to provide a direct

and fair performance comparison between these three meth-

ods. HF processes the event stream in an event-by-event

fashion, providing (in theory) a new image reconstruction

with every incoming event. However, the raw image recon-

structions from HF need to be filtered (for example, using

a bilateral filter) to obtain results with reasonable quality.

While MR can in principle also operate in an event-by-event

fashion, its best quality results are obtained when it pro-

cesses small batches of events (in our experiments, we used

NMR = 1,000 events per batch), thus limiting the output

framerate. Our method, by contrast, processes the event

stream in large batches of events (we used N = 25,000
events per batch), thus also limiting the output framerate

(i.e. increasing the latency, as analyzed in Fig. 13). In Ta-
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Figure 13. Distribution of latency for each dataset used in our quantitative evaluation.

ble 4, we report the mean event processing rate (i.e. the total

time it takes to process a dataset divided by the number of

events in the dataset) for each method. As a complemen-

tary performance measure, we also report the mean “frame

synthesis time”, which we define as follows:

• for our method, it is the time it takes to process N
events.

• For MR, it is the time it takes to process NMR events.

• For HF, it is in theory the time it takes to process a sin-

gle event (since every new event triggers a new recon-

struction), plus the image filtering time. However, the

time to process a single event is negligible compared to

the filtering time (multiple orders of magnitude less),

hence we report only the filtering time. As described

in the main text, we used a bilateral filter with filter

size d = 5 and σ = 25).

We ran our method and MR on an NVIDIA GeForce RTX

2080 Ti GPU, and HF on an Intel Core i9-9900K @ 3.60

GHz CPU.

Event rate (Mev/s) Frame synthesis time (ms)

HF 14.30 0.75 (filter)

MR 1.19 0.84

Ours 7.94 3.15

Table 4. Performance comparison between our method, HF, and

MR.

Discussion We point out that our method synthesizes

fewer images per second than MR and HF, hence the num-

bers in Table 4 should be interpreted carefully. That being

said, our method is fairly competitive in terms of perfor-

mance, and, importantly, can easily run in real-time, while

providing state of the art reconstructions in terms of quality.

E. Additional Results

E.1. Video

We strongly encourage the reader to view the supple-

mental video, which contains:

• Video reconstructions from our method on various

event datasets, with a visual comparison to several

state of the art methods.

• Video of the VINS-Mono visual-inertial odometry al-

gorithm [37] running on a video reconstruction from

events.

• Qualitative results on two additional downstream ap-

plications that were not presented in the main paper:

object detection (based on YOLOv3 [41]), and monoc-

ular depth prediction (based on MegaDepth [24]). We

point out that neither of these tasks have ever been

shown with event data before this work.

E.2. Results on Synthetic Event Data

We show a quantitative comparison of the reconstruction

quality of our method as well as MR and HF on synthetic

event sequences in Table 5. We present qualitative recon-

struction results on this dataset in Fig. 14. All methods per-

form better on synthetic data than real data. This is expected

because simulated events are free of noise. Nonetheless,

the performance gap between our method and the state of

the art is preserved, and even slightly increases (24% im-

provement in SSIM, 56% decrease in LPIPS). We note that

perfect reconstruction, even on noise-free event streams is

not possible, since image reconstruction from events is only

possibly up the the quantization limit imposed by the con-

trast threshold of the event camera.

E.3. Additional Qualitative Results on Real Data

Fig. 15 shows qualitative results on sequences from the

Event Camera Dataset [31] (which we used for our quan-

titative evaluation). Fig 16 shows qualitative results on the



Dataset
MSE SSIM LPIPS

HF MR Ours HF MR Ours HF MR Ours

synthetic 0 0.08 0.06 0.02 0.54 0.61 0.83 0.49 0.47 0.26

synthetic 1 0.15 0.14 0.06 0.38 0.45 0.60 0.54 0.56 0.37

synthetic 2 0.07 0.08 0.02 0.60 0.68 0.82 0.42 0.42 0.26

synthetic 3 0.07 0.05 0.04 0.57 0.66 0.75 0.45 0.43 0.33

synthetic 4 0.08 0.06 0.02 0.62 0.67 0.85 0.41 0.42 0.25

synthetic 5 0.08 0.08 0.02 0.50 0.61 0.74 0.53 0.54 0.36

synthetic 6 0.07 0.04 0.03 0.56 0.65 0.77 0.44 0.48 0.30

Mean 0.09 0.07 0.03 0.54 0.62 0.77 0.47 0.47 0.30

Table 5. Comparison of image quality with respect to state of the art on synthetic event sequences.

sequences introduced by Bardow et al. [3]. Figs. 17 and 18

present HDR reconstruction results on sequences from the

MVSEC dataset [56]. Further results are shown in the sup-

plementary video which conveys these results in a better

form than still images.

F. Object Classification

Below we detail the exact modalities of our reconstruc-

tion method for each of the dataset which we used for our

evaluation of object classification (Section 5.1 in the paper),

as well as the specific architectures used and training modal-

ities.

N-MNIST. To reconstruct images with our networks, we

used an event window of N = 1,000 events. We passed

every event sequence into our network, resulting in a video,

from which we keep the final image as input for the clas-

sification network. To match the images from the original

MNIST dataset, we additionally binarize the reconstructed

image (whose values lie in [0, 1]) with a threshold of 0.5.

The train and test images were normalized so that the mean

value of each image is 0.1307 and the variance 0.3081.

We used the official train and test split provided in the M-

NNIST dataset. As there is no standard state of the art ar-

chitecture for MNIST, we used a simple CNN architecture

as our classification network, composed of the following

blocks:

• 2D convolution (stride: 5, output channels: 32) + ReLU

• 2D convolution (stride: 5, output channels: 64) + ReLU

• 2D max pooling (size: 2) + Dropout

• Fully connected layer (output size: 128 neurons) + ReLU

• Fully connected layer (output size: 10 neurons)

We used the cross entropy loss, and trained the network

for 15 epochs using the ADAM optimizer, with a learning

rate of 0.001.

N-CARS. We used windows of events with a fixed tem-

poral size of 20ms, and used the last reconstructed image

from the video as input to the classification network. We

used the official train and test split provided by the N-CARS

dataset. We used a ResNet18 [16] architecture (with an ad-

ditional fully connected final layer with 2 output neurons),

initialized with weights pretrained on ImageNet [44], and

fine-tuned the network using the reconstructed images from

the training set for 20 epochs, using SGD with a learning

rate of 0.001 (decayed by factor of 0.1 every 7 epochs), and

momentum of 0.1.

N-Caltech101. For image reconstruction, we used windows

of N = 10,000, events and used the last reconstructed im-

age as input to the classification network. Since there is no

official train and test split for the N-Caltech101 dataset, we

split the dataset randomly into two third training sequences

(5,863 sequences) and one third testing sequences (2,396
sequences), following the methodology used by HATS [47].

The train and test images were converted to 3-channel

grayscale images (i.e. the three channels are the same), and

normalized so that the mean value of each image is 0.485
and the variance 0.229. We also performed data augmen-

tation at train time (random horizontal flips, and random

crop of size 224). At test time, we resized all the images to

256×256 and cropped the image around the center with a

size of 224. We used a ResNet18 architecture (with an addi-

tional fully-connected final layer with 101 output neurons),

initialized with weights pretrained on ImageNet, and fine-

tuned the network using the reconstructed images from the

training set for 25 epochs using SGD with an initial learning

rate of 0.001 (decayed by a factor of 0.1 every 7 epochs) and

momentum of 0.1. Fig. 19 shows additional reconstruction

examples from the N-Caltech101 dataset.

G. Visual-Inertial Odometry

Figs. 20, 21 and 22 provide additional results on the

visual-inertial odometry experiments presented in the main

paper. Specifically, they provide, for each sequence used in

our evaluation, the evolution of the mean translation and

rotation error as a function of the travelled distance for

our approach, UltimateSLAM (E+I), and UltimateSLAM

(E+F+I).



(a) Events (b) HF (c) MR (d) Ours (e) Ground truth

Figure 14. Qualitative comparison of our reconstruction method with HF [45] and MR [32] on synthetic sequences from the validation set.

Note our method is able to reconstruct fine details such as the bear’s fur (last row), which competing methods are not able to preserve.



(a) Scene Preview (b) Events (c) HF (d) MR (e) Ours (f) Ground truth

Figure 15. Qualitative comparison of our reconstruction method with two recent competing approaches, MR [32] and HF [45], on sequences

from [31], which contain ground truth frames from a DAVIS240C sensor. Our method successfully reconstructs fine details (textures in

the second and third row) compared to other methods, while avoiding ghosting effects (particulary visible in the shapes sequences on the

fourth row).



(a) Events (b) SOFIE [3] (c) HF [45] (d) MR [32] (e) Ours

Figure 16. Qualitative comparison of our reconstruction method with various competing approaches. We used the datasets from [3]. The

dataset does not contain ground truth images, thus only a qualitative comparison is possible. For SOFIE and MR, we used images provided

by the authors, for which the parameters were tuned for each dataset. For HF, we ran the code provided by the authors, manually tuned the

parameters on these datasets to achieve the best visual quality, and additionally applied a bilateral filter to clean the high frequency noise

present in the original reconstructions.



(a) Events (b) VI sensor frame (c) Our reconstruction

Figure 17. Example HDR reconstructions on the MVSEC automotive dataset [56]. The standard frames were recorded with a high-quality

VI sensor with auto-exposure activated. Because the camera is facing directly the sun, the standard frames (b) are either under- or over-

exposed since the limited dynamic range of the standard sensor cannot cope with the high dynamic range of the scene. By contrast, the

events (a) capture the whole dynamic range of the scene, which our method successfully reconstructs to high dynamic range images (c),

allow to discover details that were not visible in the standard frames.



(a) Events (b) VI sensor frame (c) Our reconstruction

Figure 18. Example HDR reconstructions on the MVSEC automotive dataset [56] at night. The standard frames were recorded with a

high-quality VI sensor with auto-exposure activated. Because of low light during the night, the standard frames (b) are severely degraded.

By contrast, the events (a) still can capture the whole dynamic range of the scene, which our method successfully recovers (c), allowing to

discover details that were not visible in the standard frames.



(a) Events (b) Our Reconstruction (c) Original Image

Figure 19. (a) Previews of some event sequences from the N-Caltech101 dataset [33] which features event sequences converted from the

Caltech101 dataset. (b) our reconstructions (from events only) preserve many of the details and statistics of the original images (c). Note

that these datasets feature planar motion (since Caltech101 images were projected on white wall to record the events), which coincides

with the type of motions present in the simulated data, which explains in part the outstanding visual quality of the reconstructions.
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Figure 20. Evolution of the overall mean translation error (in meters) and mean rotation error (in degrees), averaged across all the datasets

used in our evaluation.
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Figure 21. Evolution of the mean translation error (in meters) and mean rotation error (in degrees), as a function of the travelled distance.

Sequences from top to bottom: ’shapes translation’, ’poster translation’, ’boxes translation’, ’dynamic translation’.
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Figure 22. Evolution of the mean translation error (in meters) and mean rotation error (in degrees), as a function of the travelled distance.

Sequences from top to bottom: ’shapes 6dof’, ’poster 6dof’, ’boxes 6dof’, ’dynamic 6dof’, ’hdr boxes’.
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