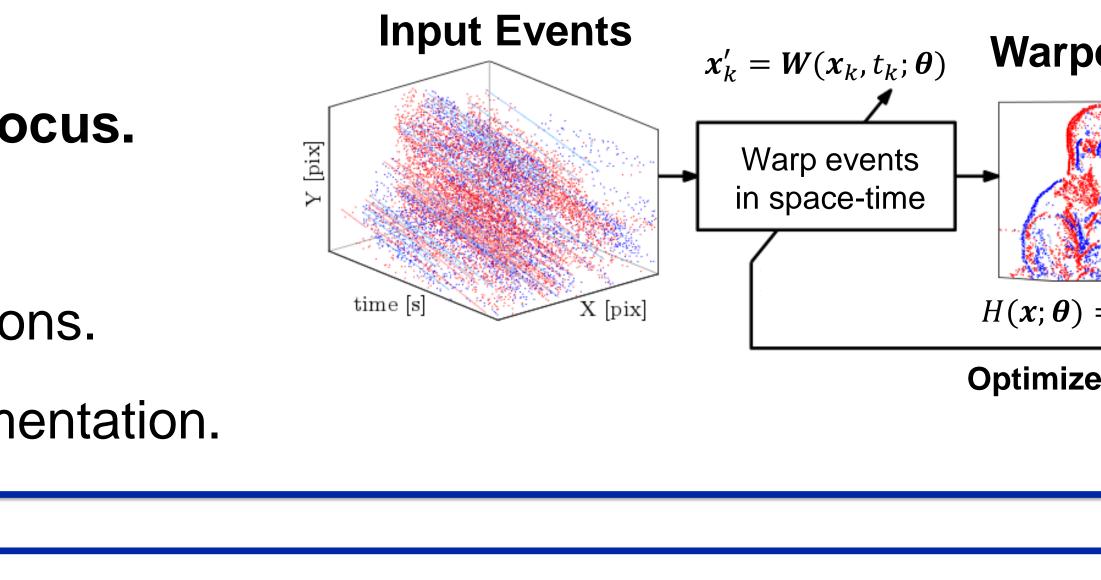
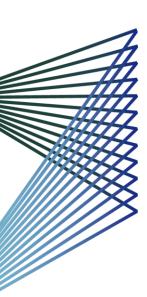


Institute of Informatics – Institute of Neuroinformatics

Motivation: Event cameras promise to revolutionize computer vision by unlocking challenging scenarios: HDR, high speed, low latency.

Goal: Develop and compare **loss functions** for event-based optimization problems (3D reconstruction, motion estimation, etc.) that can be used in unsupervised learning




Focus is All You Need: **Loss Functions for Event-based Vision**

Guillermo Gallego, Mathias Gehrig, Davide Scaramuzza

Key Ideas:

- Motion estimation by Focus Maximization.
- **Connect event-based vision and shape-from-focus.**
- Compare multiple (>20) objective functions.
- What functions are the best? Practical conclusions.
- **Applications**: depth and motion estimation, segmentation.

ROBOTICS & PERCEPTION GROUP

Motion Compensation Framework

Warped Events

Measure even alignment $H(\boldsymbol{x};\boldsymbol{\theta}) = \Sigma_{k=1}^{N_e} b_k \delta(\boldsymbol{x} - \boldsymbol{x}'_k)$

Optimize motion parameters

ss Function	Туре	Spatial?	RMS w/o	RMS w/	Time [µs]
9	Statistical	No	18.52	18.94	16.90
uare	Statistical	No	19.93	19.02	25.11
osolute Deviation	Statistical	No	19.46	19.58	78.11
osolute Value	Statistical	No	-	19.77	23.89
	Statistical	No	28.50	26.54	271.85
rea	Statistical	No	25.85	18.85	1098.64
ange	Statistical	No	28.66	28.72	263.11
riance	Statistical	Yes	18.21	18.40	78.48
ean Square	Statistical	Yes	24.81	19.86	137.20
ean Absolute Dev.	Statistical	Yes	21.37	18.74	177.15
ean Absolute Val	Statistical	Yes	-	24.10	243.58
Index	Statistical	Yes	24.28	23.43	116.39
Contiguity Ratio	Statistical	Yes	23.87	19.50	181.73
t Magnitude	Derivative	Yes	17.83	18.10	128.46
n Magnitude	Derivative	Yes	18.32	17.58	293.80
Magnitude	Derivative	Yes	18.41	17.93	569.55
ce of Gaussians (DoG)	Derivative	Yes	20.85	19.25	189.90
n of Gaussians (LoG)	Derivative	Yes	20.36	17.77	127.65
of Laplacian	Stat. & Deriv.	Yes	18.26	18.01	327.60
of Gradient	Stat. & Deriv.	Yes	18.69	19.08	872.03
of Squared Grad.	Stat. & Deriv.	Yes	18.72	18.95	653.62
of Mean Timestamp	Statistical	No	82.89	-	24.43

Focus score