

Institute of Informatics – Institute of Neuroinformatics

Motivation:

Steering angle prediction with standard cameras is not robust to scenes characterized by high dynamic range (HDR), motion blur, and low light.

Goal:

By using an event camera, we achieve steering angle prediction with unprecedented performance in HDR and even at night, outperforming standard cameras.

Why event cameras?

- They **naturally respond to motion** in the scene.
- Advantages over standard cameras: **low** latency, high temporal resolution, and HDR.

Large-scale dataset

 \approx 12 h. of annotated driving recordings, including async. events and sync. grayscale frames.

Input data

Comparison with grayscale frames and difference of grayscale frames under different conditions:

Grayscale frames

Grayscale difference

> Event / frames

Event-based Vision meets Deep Learning on Steering Prediction for Self-Driving Cars

Ana Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, Davide Scaramuzza

• Asynchronous event: change in pixel brightness. • Conversion to synchronous event frames.

Learning process

Steering angle regression through a Convolutional Neural Network.

Alternate sequences of 40 sec for training, and 20 sec for testing.

 Transfer learning from RGB images to event frames:

Results

wide range of scenarios.

[1] Bojarski et al., "End to end learning for self-driving cars", arXiv, April 2016. [2] Xu et al., "End-to-end learning of driving models from large-scale video datasets", IEEE Int. Conf. Comp. Vis. Pattern Recog. (CVPR), July 2017.

• The same CNN can predict a vehicle's steering angle on a very

	EVA	RMSE	Input
VIDIA 2016)	0.161	9.02°	Grayscale
PR 2017)	0.300	8.19 ⁰	Grayscale
	0.738	4.58°	Events
init.)	0.800	4.40°	Events
et init.)	0.826	4.10 [°]	Events