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Abstract

The extraction and matching of interest points is a prerequisite for many geomet-
ric computer vision problems. Traditionally, matching has been achieved by assigning
descriptors to interest points and matching points that have similar descriptors. In this pa-
per, we propose a method by which interest points are instead already implicitly matched
at detection time. With this, descriptors do not need to be calculated, stored, commu-
nicated, or matched any more. This is achieved by a convolutional neural network with
multiple output channels and can be thought of as a collection of a variety of detec-
tors, each specialised to specific visual features. This paper describes how to design and
train such a network in a way that results in successful relative pose estimation perfor-
mance despite the limitation on interest point count. While the overall matching score is
slightly lower than with traditional methods, the approach is descriptor free and thus en-
ables localization systems with a significantly smaller memory footprint and multi-agent
localization systems with lower bandwidth requirements. The network also outputs the
confidence for a specific interest point resulting in a valid match. We evaluate perfor-
mance relative to state-of-the-art alternatives.

Multimedia Material

Source code and data for this work are available at
https://github.com/uzh-rpg/imips_open.

1 Introduction

Many applications of computer vision, such as structure from motion and visual localization,
rely on the generation of point correspondences between images. Correspondences can be
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Figure 1: We propose a CNN interest point detector which provides implicitly matched
interest points: descriptors are not needed for matching. This image illustrates the output of
the network. Hue indicates which channel has the strongest response for a given pixel, and
brightness indicates that response. Circles indicate the interest points, which are the global
maxima of each channel. Lines indicate inlier matches after P3P localization.

found densely [7, 13, 29], where a correspondence is sought for every pixel, or with sparse
feature matching, where correspondences are only established for a few distinctive points in
the images. While dense correspondences capture more information, it is often of interest to
establish them only sparsely. Sparse correspondences make algorithms like visual odometry
or bundle adjustment far more tractable, both in terms of computation and memory.

Sparse feature matching used to be solved with hand-crafted descriptors [2, 21, 31],
but has more recently been solved using learned descriptors [5, 28, 39]. In this paper, we
propose a novel approach that exploits convolutional neural networks (CNNs) in a new way.
Traditionally, features are matched by first detecting a set of interest points, then combining
these points with descriptors that locally describe their surroundings, to form visual features.
Subsequently, correspondences between images are formed by matching the features with
the most similar descriptors. This approach, which has been developed with hand-crafted
methods, has been directly adopted in newer methods involving CNNs. As a result, different
CNN s have been used for the different algorithms involved in this pipeline, such as interest
point detection, orientation estimation, and descriptor extraction.

We propose a method that uses only a single, convolution-only neural network that sub-
sumes all of these algorithms. This network can be thought of as an extended interest point
detector, but instead of outputting a single channel that allows the selection of interest points
using non-maximum suppression, it outputs multiple channels (see Figure 1). For each chan-
nel only the global maximum is considered an interest point, and the network is trained in
such a way that the points extracted by the same channel from different viewpoints are cor-
respondences. As with traditional feature matching, geometric verification is required to
reject outlier correspondences. The network can alternatively be thought of as a dense point
descriptor, but instead of expressing descriptors along the channel axis of the output tensor,
each channel represents the response to a function defined in the descriptor space.

An important benefit of our method is that descriptors do not need to be calculated,
stored, communicated or matched any more. Previously, the minimal representation of an
observation for relative pose estimation consisted of point coordinates and their associated
descriptors. With our method, the same observation can be represented with as little as
the point coordinates (3 bytes for up to 4096 x 4096 images), ordered consistently with the
channel order.

We provide an evaluative comparison of our method with other state-of-the-art methods
on indoor, outdoor and wide-baseline datasets. As our evaluations show, it is a viable alterna-
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tive to methods involving explicit descriptors particularly with narrow baselines, achieving a
similar pose estimation performance.

2 Related Work

Modern feature matching can be best understood by considering the sub-problems and their
historical context. Calculating dense correspondences for images used to be prohibitive, so
instead early work concentrated on finding sparse sets of points that could be used for cor-
respondence generation. In a first interest point detector, [26] identified points which are
explicitly distinct from the points that surround them—thus increasing the likelihood to be
unambiguously matched in another image. Subsequently, faster approximations for distinc-
tiveness have been found, whether using first-order approximations [12, 34], or convolutional
filters [2, 21]. Alternatively, a detector can explicitly target a subset of distinctive points, such
as corners and dots [30]. All of these methods calculate a response for every pixel in the im-
age, and the n pixels with the largest response are selected as interest points. This process
typically involves non-maximum suppression in order to prevent directly neighboring points
from being selected.

Once a set of interest points is extracted in the images, they need to be matched between
each other to establish correspondences. One can match points based directly on the sur-
rounding image patches, but this is fragile to slight changes in illumination and viewpoint.
Instead, descriptors can be used, which are functions of patches and whose output is typically
lower-dimensional, but invariant to some amount of illumination and viewpoint change, yet
still distinctive enough to differ between the different points extracted in one image. A pop-
ular class of traditional descriptors is histograms of gradients (HoG) [21]. Another example
are binary descriptors, which are particularly efficient to calculate [4, 19, 31].

Most descriptors, however, are still sensitive to large affine transformations such as
changes in scale and orientation. Consequently, modern feature matchers use multi-scale
detection [19, 24], and orientation estimation [21, 31]. A wide variety of traditional feature
matching systems comprising these components exist, see the survey in [27].

Recent success of convolutional neural networks (CNNSs), however, has led the commu-
nity to revisit these systems and replacing their components with CNN-based methods. For
detection, the traditionally handcrafted “featureness” responses can directly be replaced with
a fully convolutional neural network. Rather than just imitating traditional interest point de-
tectors, CNN-based detectors can be trained to be invariant across different viewpoints [17],
to present consistent ranking in the images in which they are extracted [32] and to provide
particularly sharp and thus unambiguous responses [41]. A majority of these methods is
compared in [18]. CNNs are furthermore proven function approximators for image patches
and thus well suited for descriptor calculations. The output channels of a CNN can simply
be interpreted as the coefficients of a descriptor [11, 15, 20, 25, 35, 38, 40]. A comparison of
traditional and learned descriptors is provided in [33]. While the results of comparing CNN-
based methods to traditional methods do not yet suggest absolute superiority of CNN-based
methods [33], an advantage of CNN-based methods is that they are malleable: firstly, they
can adapt to and learn from new data: Consider an application where the type of environment
is known beforehand—CNN-based methods can be trained to work particularly well on that
particular type of environment. Secondly, they can adapt to or be trained together with other
components of a larger system.

Two recent systems that fully integrate CNN-based methods and do this kind of joint
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training are LF-Net [28] and SuperPoint [5]. LF-Net [28] builds on top of a previous method
by the same authors, LIFT [39], the first such system, in which the method was trained on
a set of pre-extracted patches. [28], instead, is trained in a self-supervised and more un-
constrained manner, only requiring an image sequence with ground truth depths and poses.
Like [39], [28] uses separate CNNs for multi-scale interest point detection, feature orienta-
tion estimation and feature description. In contrast, SuperPoint [5] only contains an interest
point detector and a feature descriptor network, both of which are sharing several encoder
layers. It also does not explicitly express multi-scale detection, but rather trains multi-scale
detection implicitly. It is first pre-trained on labeled synthetic images, then fine tuned on
artificially warped real images. Both [28] and [5] still consider the traditional components of
feature detection as separate functional units, even if the whole system is trained end-to-end.

In contrast, we offer a novel approach in which all components are subsumed into a
single network. Beside having the benefit that all components can be jointly trained (from
scratch) and thus tailored to one another, we also get rid of explicit descriptors. Instead,
interest points are implicitly matched by the CNN output channel from which they originate.
In practice, this results in memory, computation and potentially data transmission savings,
as descriptors do not need to be stored, matched or communicated any more.

There have been some previous attempts to significantly reduce the amount of data as-
sociated with descriptors. In [37], the authors replace descriptors with word identifiers of
the corresponding visual word in a Bag-of-Words visual vocabulary [36]. This can be used
jointly with Bag-of-Words place recognition in order to facilitate multi-agent relative pose
estimation with minimal data exchange. In [23], the authors propose highly compressed
maps for visual-inertial localization in which binary descriptors are projected down to as
little as one byte. In contrast, our approach circumvents the use of any explicit descriptor, by
implicitly embedding a form of descriptor in the learned detection algorithm itself.

3 System Overview

In analogy to other state-of-the-art approaches for interest point detection, we employ a
neural network to predict a per-pixel response from an input image. But instead of only pre-
dicting a single output score for every pixel, we predict n different activations, see Figure 2.
The neural network consists of 14 layers of 3 x 3 convolutions with stride 1 and leaky ReLU
activations, except for the final activation, which is a sigmoid. The first half layers output
64 channels, the second half 128. From each final output channel i, we extract the argmax
as i-th interest point with coordinates ¢;. The key concept is that we then implicitly match
the interest point from the same output channel across multiple frames. This has the advan-
tage of inherently solving the data association problem, without the need to use descriptors
explicitly. Formally, point ¢; from image / is matched with point ¢, from image I’. At test
time, a relative pose between both images can then be computed based on the corresponding
interest point coordinates.

During training, an inlier determination module (Section 3.1) processes the matches
(¢i,¢}) and determines which of them are inliers. This relies on ground truth correspondences
¥(c;). Interest points, correspondences and inlier labels shape mini-batches that contribute
to the loss for a given training step as described in Section 4. During evaluation and de-
ployment, the inlier determination module is replaced with an application-specific geometric
verifier, such as a perspective-n-point (PnP) localizer. In our experiments, we evaluate our
system with P3P [9] localization using RANSAC [8], which produces a relative pose esti-
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Figure 2: Overview of our approach. Given an image, a CNN computes n activations, the
argmax of which are considered the n interest points. The interest points from two differ-
ent images are matched by channel. During training, these matches are labeled as inliers,
outliers, or unassigned using ground truth correspondences. Our loss promotes inliers, pe-
nalizes outliers, and suppresses redundancy. For evaluation, the correspondences are used to
compute a relative pose between two images which is compared against ground truth.

mate. We compare this pose estimate to the ground truth relative pose to assess the viability
of our method for visual pose estimation.

3.1 Inlier and True Correspondence Determination

Our training methodology requires inlier labels and correspondences in order to calculate the
loss. Given a method W to calculate true correspondences between the two images provided
in a training step, we label an interest point c¢; as inlier if the correspondence of the matched
interest point from the other image ¥~! (c}) is within 3px of the matched interest point in
the other image and vice versa. Otherwise, the match is either labeled an outlier if the cor-
respondence lies somewhere else within the respective image, or unassigned if it is outside
the image frame. In some datasets, a method to compute ground truth correspondence is
provided. If such a method is not provided, correspondence can be calculated from ground
truth depth and pose [32]. In case these are not provided either, the correspondence can be
estimated using an SfM algorithm [28] given image sequences, or by using direct tracking
such as KLT [22]. With this only image regions with sufficient texture can be tracked, which
is acceptable since image regions without texture are unlikely to be of interest.

4 Training Methodology

We use standard iterative training using Adam updates [16]. In each iteration, a training
sample, which consists of two images of the same scene is forwarded through the system to
obtain a set of matches {(c;,c}),i € {0,...,n—1}} and an associated set of true correspon-
dences {(d;,d}) = (¥(c;), ¥~ !(c}))} according to Figure 2. During training, the loss is only
applied at these sparse locations. In order to allow for efficient gradient backpropagation,
patches are gathered from these locations. In image /, two mini-batches are formed: one
from stacking interest point patches P(c;) centered around ¢; and shaped according to the
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chn. label P(co) | P(c1) | P(c2) || P(dp) | P(d}) | P(d}))
0 inlier T n/a
1 outlier i 1 T n/a
2 unass. 4 n/a

Table 1: Mini-batch toy example to illustrate losses. For inliers, the activation of the maxima
is strengthened while suppressing the activation in the other channels. For outliers, the acti-
vation of the maxima is weakened while promoting the response of the true correspondence.

receptive field, r x r, of a single pixel at the output. The other from stacking correspondence
patches P(d!) centered around the correspondences d; . Both batches have a shape [n,r,7,1].
The network transforms both of them into output tensors of shape [n,1,1,n]. The training
loss is now applied to these tensors. Since they are flat along the height and width dimen-
sions, we can conceptualize them as square matrices along the batch and channel dimensions,
and visualize how the loss is applied to them in Table 1 for a toy example with n = 3. Note
that the diagonal in the first tensor contains the responses of patch P(c;) at channel i, which is
the maximum value in channel i and the value that caused c; to be selected as interest point.
Similarly, the diagonal in the second tensor contains the responses that should be the maxi-
mum in the given channel considering the correspondence from the interest point selected in
the other image. The training loss that is applied to these tensors has three components with
their specific purpose:

o [nlier reinforcement reinforces interest points that are inliers in a given training sam-
ple, and suppresses interest points that are outliers.

e Redundancy suppression ensures that different channels do not converge to the same
points.

o Correspondence reinforcement reinforces true correspondences of all points which are
outliers in a given training sample.

The entire loss formulation is symmetrically applied to the other image I'.

Let p;; be the scalar response of channel j to patch P(c;) and /; the inlier label of that
patch. Then, the inlier reinforcement loss is simply the cross-entropy loss according to that
label, applied where i = j:

—log(pij), L= inlier,i= j,

Lin(pij, li) = § —log(1 —p;j), I = outlier,i= j, (D
0 otherwise.

This is the loss responsible for learning a high response for points that are likely to result in
inliers. In Table 1 the inlier reinforcement effect is observed for channel 0 on P(cp) and the
outlier suppression effect is present for channel 1 on P(cy).

To prevent channels from converging to the same interest points, a loss is applied on
inlier patches that suppresses the response on all channels, except the one which gave rise to
the inlier:

_ J—log(1—p;j), [ =inlier,i# j,
Lrea(pij) = { 0 otherwise. 2)
In Table 1 the redundancy suppression is present on channels 1 & 2 on P(cg). We found
that without redundancy suppression, all channels tend to converge to a single feature, all
selecting the same interest point in every image.
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Finally, we have found that our network does not converge with the above losses alone.
Thus, for channels with outliers, we promote p;, the response of channel i to patch P(d’):

/Y — —log(pﬁ,-), l; = outlier
Leor(pi) = { 0 otherwise. 3)

In Table 1 the correspondence reinforcement can be observed in channel 1 on P(d}), which
is the patch extracted at the correspondence of the maximum activation of the paired image.

4.1 Training Pair Selection

In datasets such as HPatches [1], pairs are pre-selected. For image sequences, we extract
pairs as follows: Given one image, points are densely sampled and subjected to KLT tracking
for as far into subsequent images as possible. A pair is then formed between this initial image
and a random subsequent image in which at least a fraction o of the initial points is still
tracked. o thus reflects the minimum scene overlap between the two images. The benefit of
this method is that it can be applied to uncalibrated image sequences, while providing good
guarantees regarding minimum scene overlap. For training, we use o = 0.3, for selecting
pairs during evaluation o = 0.5.

S Experiments

We subject our method to evaluation and comparison to state-of-the-art on three datasets:
The viewpoint-variant part of the wide-baseline HPatches benchmark [1, 18], sequence 00
of the outdoor autonomous driving dataset KITTI [10] and sequence V1_01 of the indoor
drone dataset EuRoC [3]. For the two sequences, 100 image pairs are randomly selected us-
ing the method in Section 4.1. KITTI and EuRoC are stereo datasets, and we only use the left
camera for the image pairs. Rotation and translation differences within these pairs are plot-
ted in the supplementary material. For the HPatches benchmark, we train our network using
the provided training split, while for KITTI and EuRoC, we train our network on a separate
dataset, TUM mono [6], where we use the rectified images of sequences 01, 02, 03 (in-
doors) and 48, 49, 50 (outdoors). We found that adding sequences 04 to 47 does not result
in better performance. For the sequences, we use KITTI 05 as validation dataset. Ground
truth correspondences are given by ground truth homographies in the HPatches training data.
In TUM mono, they are instead established using KLT as discussed in Section 3.1.

We compare our method to SIFT [21], SURF [2], ORB [31], LF-Net [28] and Super-
Point [5]. For SIFT, SURF and ORB, we use the OpenCV implementation, while for LF-Net
and Superpoint, we use the publicly available code and pre-trained weights. All baselines
are evaluated both at 128 interest points, like our method, and at a more native interest point
count of 500.

5.1 Matching score

For all datasets, we evaluate matching score, which is the fraction of inlier matches among
all matches. In HPatches, the ground truth homography is used to distinguish inlier from
outlier matches. In KITTI and EuRoC we instead use the inliers that are determined during
pose estimation, see Section 5.2. As a consequence, the matching score here more closely
reflects the matching score that is achieved in practice when doing relative pose estimation,
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Figure 3: Matching score distributions (higher is better).

whether in SLAM or in map localization. Figure 3 shows the matching score obtained in
the three datasets. Both on KITTI and on EuRoC, our method performs slightly worse than
all baselines except ORB, especially if the latter are permitted to extract more points than
our method. Note, however, that SURF, SIFT, SuperPoint and LF-NET use 64,128,256
and 256 floating points to describe each interest point, respectively, in addition to point
locations. Instead, our method represents a visual location using only 128 properly ordered
point locations. The results on HPatches show that our method is still not very well suited to
the significant viewpoint and scale changes present in that dataset. Nevertheless, we believe
that implicit interest point matching opens a new research direction in terms of more closely
integrated detector training. Future work to address strong viewpoint and scale changes
could include considerations such as scale and rotation invariance, whether by modeling
inside the neural network [28] or by data augmentation and curricular learning [5].

5.2 Pose Estimation Accuracy

To understand how matching score translates to pose estimation accuracy, we compare the
pose estimated using our method and SIFT with the ground truth relative pose on both KITTI
and EuRoC. Both in SLAM and map localization absolute relative pose is typically obtained
from interest points matched to 3D point locations by P3P localization [9] with RANSAC [8].
To obtain 3D point locations in one of the two images, we use epipolar stereo matching of
the interest points extracted using our method or a baseline with the corresponding image
from the right camera. Rotation and translation error are measured with the geodesic (angle
in angle-axis) and euclidean distances. In Figure 4 these errors are compared to the inlier
count for each pair in the KITTI testing set, using both our interest points and SIFT. The
same plot for EuRoC can be found in the supplementary material. We can see that both with
our method and with SIFT, an inlier count above 10 indicates a good relative pose (rotation
error below 1°, translation error below 30cm). Estimates get slightly better up to an inlier
count of 20, beyond which they do not improve by much, even if much more interest points
are extracted. We transfer this insight to Figure 3, where we indicate the matching score
corresponding to 10 inliers with a vertical line. From this, we can see that our method results
in good relative poses in 80% of the tested image pairs.
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Figure 5: (a), (b) Empiric “inlierness" frequency versus response, and histogram of interest
point responses. Inlierness frequency is calculated per histogram bin by dividing the amount
of inliers within a response range by the total amount of interest points within that range. (c),
(d) Accuracy versus representation size for our method and baselines, including compression
schemes for SIFT. Note the logarithmic scale. Left: KITTI, right: EuRoC.

5.3 Other results

102 10°

Some additional insights are shown in Figure 5. The parts (a) and (b) show how the proba-
bility of a point being an inlier is correlated with the response of the corresponding channel
at that point, using our network. As can be seen, there is a good correlation, which indicates
that the response has some predictive power regarding the probability of a point resulting in
an inlier. This could potentially be exploited, for example in RANSAC model sampling. In
(c) and (d), we show how pose estimation accuracy compares to the amount of data needed
to represent a visual frame for our method, the previously used baselines and two compres-
sion methods applied to SIFT descriptors. Here, accuracy represents the fraction of pose
estimates with rotation and translation errors below 1° and 30cm (KITTI) and 3° and 10cm
(EuRoC). The two compression methods are principle component analysis (PCA) projection
of SIFT descriptors and product quantization [14, 23], see the supplementary material for
details. For our method, we evaluate networks with output channel counts € {64,128,256}.
For all other methods, we evaluate {64, 128,256,500,1000} interest points per image. As
can be seen, our method outperforms baselines in the trade-off between accuracy and repre-
sentation size.
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6 Conclusion

In this paper, we have introduced a descriptor-free approach for detection and matching of
sparse visual features. We rely on a convolutional neural network to predict multiple activa-
tion layers and we define the location of the maximal response in each layer to be an interest
point. The key novelty is that instead of relying on descriptors for matching, interest points
are uniquely associated to the activation layer they are extracted from. This setup allows
us to train the traditionally modularized interest point detection, description, and matching
processes jointly in a simple setup, while at the same time getting rid of the requirement for
explicit descriptors. Without descriptors, visual features can be stored, communicated and
matched at a highly reduced cost. For this system, we have devised a self-supervised training
methodology that reinforces interest points that result in inliers, ensures that each channel
specializes on different features, and uses ground truth correspondences to ensure that chan-
nels not resulting in inliers find good candidate features. This training can be achieved with
uncalibrated image sequences. Albeit achieving slightly lower matching scores when com-
pared to other approaches that do use descriptors, we demonstrated the applicability of our
descriptor-free approach in a visual pose estimation setup.
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