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Abstract—Because of their high temporal resolution, increased resilience to motion blur, and very sparse output, event cameras have
been shown to be ideal for low-latency and low-bandwidth feature tracking, even in challenging scenarios. Existing feature tracking
methods for event cameras are either handcrafted or derived from first principles but require extensive parameter tuning, are sensitive
to noise, and do not generalize to different scenarios due to unmodeled effects. To tackle these deficiencies, we introduce the first
data-driven feature tracker for event cameras, which leverages low-latency events to track features detected in an intensity frame. We
achieve robust performance via a novel frame attention module, which shares information across feature tracks. Our tracker is
designed to operate in two distinct configurations: solely with events or in a hybrid mode incorporating both events and frames. The
hybrid model offers two setups: an aligned configuration where the event and frame cameras share the same viewpoint, and a hybrid
stereo configuration where the event camera and the standard camera are positioned side-by-side. This side-by-side arrangement is
particularly valuable as it provides depth information for each feature track, enhancing its utility in applications such as visual odometry
and simultaneous localization and mapping.
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1 INTRODUCTION

D ESPITE many successful implementations in the real
world, existing feature trackers are still primarily con-

strained by the hardware performance of standard cameras.
To begin with, standard cameras suffer from a bandwidth-
latency trade-off, which noticeably limits their performance
under rapid movements: at low frame rates, they have
minimal bandwidth but at the expense of an increased la-
tency; furthermore, low frame rates lead to large appearance
changes between consecutive frames, significantly increas-
ing the difficulty of tracking features. At high frame rates,
the latency is reduced at the expense of an increased band-
width overhead and power consumption for downstream
systems. Another problem with standard cameras is motion
blur, which is prominent in high-speed low-lit scenarios, see
Fig. 1. These issues are becoming more prominent with the
current commodification of AR/VR devices.

Event cameras have been shown to be an ideal comple-
ment to standard cameras to address the bandwidth-latency
trade-off [1], [2]. Event cameras are bio-inspired vision
sensors that asynchronously trigger information whenever
the brightness change at an individual pixel exceeds a
predefined threshold. Due to this unique working principle,
event cameras output sparse event streams with a temporal
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Fig. 1. Our method leverages the high-temporal resolution of events to
provide stable feature tracks in high-speed motion in which standard
frames suffer from motion blur. To achieve this, we propose a novel
frame attention module that combines the information across feature
tracks. Our architecture seamlessly extends to sparse disparity estima-
tion for a dual setup including a standard and event camera.
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resolution in the order of microseconds and feature a high-
dynamic range and low power consumption. Since events
are primarily triggered in correspondence of edges, event
cameras present minimal bandwidth. This makes them ideal
for overcoming the shortcomings of standard cameras.

Existing feature trackers for event cameras have shown
unprecedented results with respect to latency and tracking
robustness in high-speed and high-dynamic range scenar-
ios [2], [3]. Nonetheless, until now, event-based trackers
have been developed based on classical model assumptions,
which typically result in poor tracking performance in the
presence of noise. They either rely on iterative optimization
of motion parameters [2], [4], [5] or employ a simple classi-
fication for possible translations of a feature [3], thus, do not
generalize to different scenarios due to unmodeled effects.
Moreover, they usually feature complex model parameters,
requiring extensive manual hand-tuning to adapt to differ-
ent event cameras and new scenes.

To tackle these deficiencies, we propose the first data-
driven feature tracker for event cameras, which leverages
the high-temporal resolution of event cameras to maximize
tracking performance. Using a neural network, our method
tracks features by localizing a template patch in subsequent
event patches. The template patch can be constructed from
a grayscale image either captured by a camera or generated
by events using E2VID [6]. The network architecture fea-
tures a correlation volume for the assignment and employs
recurrent layers for long-term consistency. To increase the
tracking performance, we introduce a novel frame attention
module, which shares information across feature tracks in
one image. We first train on a synthetic optical flow dataset
and then finetune it with our novel self-supervision scheme
based on 3D point triangulation using camera poses.

Moreover, our feature-tracking architecture seamlessly
extends to dual-camera systems, where the event and the
standard camera are placed side-by-side (a setup becom-
ing popular in mobile device applications1). This novel
approach transforms the conventional challenge of align-
ing events and images into a strength since our method
provides robust feature tracks with corresponding disparity
information. Both tasks are crucial for VO/SLAM pipelines
relying on accurate feature tracking and disparity estima-
tion. As demonstrated in our experiments, the feature tracks
and disparities inferred by our method provide more accu-
rate estimations compared to existing methods, all while
maintaining a fast runtime. This manuscript extends our
previous work [7] in several ways:

• We remove the requirement for aligned event
and grayscale sensors by integrating our approach
with an event-to-image reconstruction method and
demonstrating competitive performance.

• We extend our work to sparse disparity estimation
using dual-camera systems with minor modifications
demonstrating the applicability of our method to
VO/SLAM pipelines.

• Our experiments on sparse disparity estimation
demonstrate that our approach performs comparably

1. https://www.prophesee.ai/2023/02/27/prophesee-qualcomm-
collaboration-snapdragon/

to dense disparity methods while requiring signifi-
cantly less runtime.

2 RELATED WORK

Frame-Based Feature Tracking While no prior works have
leveraged deep learning to track features from events, data-
driven methods were recently proposed for feature track-
ing using standard frames. Among them is PIP [8], which
estimates the trajectories of queried feature locations for
an entire image sequence and thus can even track fea-
tures through occlusions by leveraging the trajectory be-
fore and after. Instead of processing the whole sequence,
DPVO [9] takes a sequence of images and simultaneously
estimates scene depth and camera pose on-the-fly. It does
so by randomly sampling patches from feature maps from
frames and adding them to a bipartite frame graph, which
is iteratively optimized by correlating feature descriptors
from patches observed at different camera poses. A related
research field to feature tracking is optical flow estimation,
i.e., dense pixel correspondence estimation between two
frames. There exist many optical flow methods [10], with
correlation-based networks [11], [12] being the state-of-the-
art. However, despite recent advancements, frame-based
feature trackers still suffer from the hardware limitation of
standard cameras. To tackle this disadvantage, we propose
a self-supervised tracker that unlocks the robustness charac-
teristics of event cameras for feature tracking and, by doing
so, outperforms state-of-the-art tracking methods.

Pose Supervision Leveraging camera poses was previ-
ously explored for training feature detection and matching
networks. Wang et al. [13] used pose data to supervise a
network for pixel-wise correspondence estimation where
the epipolar constraint between two frames is used to
penalize incorrect predictions. More recently, a correspon-
dence refinement network called Patch2Pix [14] extends
the epipolar constraint supervision by using the Sampson
distance instead of the Euclidean Distance. Instead of only
considering two camera poses, our self-supervision strategy
computes a 3D point using DLT [15] for each predicted track
in multiple frames, which makes our supervision signal
more robust to errors. Moreover, we supervise our network
by computing a 2D distance between the reprojected and
predicted points without the ambiguity of a distance to an
epipolar line.

Event-Based Feature Tracking In recent years, multi-
ple works have explored event-based feature tracking to
increase robustness in challenging conditions, such as fast
motion scenarios with large pixel displacement between
timesteps and HDR scenes with very bright and dark ar-
eas [2]. Early works [4], [5], [16] tracked features as point-
sets of events and used ICP [17] to estimate the motion
between timesteps, which can also be combined with frame-
based trackers to improve performance [18]. Instead of point
sets, EKLT [2] estimates the parametric transform between a
template and a target patch of brightness increment images
alongside the feature’s velocity. Other event-based trackers
align events along Bézier curves [19] or B-splines [20] in
space and time to obtain feature trajectories.

To exploit the inherent asynchronicity of event streams,
event-by-event trackers have also been proposed [21], [22].

https://www.prophesee.ai/2023/02/27/prophesee-qualcomm-collaboration-snapdragon/
https://www.prophesee.ai/2023/02/27/prophesee-qualcomm-collaboration-snapdragon/
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One of them is HASTE [3], which reduces the space of
possible transformations to a fixed number of rotations and
translations. In HASTE, every new event leads to confi-
dence updates for the hypotheses and a state transition if
the confidence threshold is exceeded. Another work called
eCDT [23] first represents features as event clusters and then
incorporates incoming events into existing ones, resulting in
updated centroids and, consequently, updated feature loca-
tions. In a similar direction to feature tracking, several event-
based feature detectors [24], [25] were proposed, of which
some are performing feature tracking based on proximity of
detections in the image [26], [27]. Apart from event-based
feature tracking and detection, multiple works tackle the
problem of object tracking using event cameras [28], [29],
[30], [31], [32], [33].

The task of optical flow estimation using event cameras
gained popularity as well. Zhu et al. [5] estimates the optical
flow of features from events using ICP and an objective
function based on expectation maximization to solve for
the parameters of an affine transform. More recently, an
adaptive block matching algorithm [34] was proposed to es-
timate optical flow. Finally, recent data-driven methods for
event-based optical flow estimation [35], [36], [37] leverage
advances in deep optical-flow estimation. Inspired by these
advances, our tracking network leverages a correlation layer
to update a feature’s location.

Event-Based Depth Estimation Similar to template
matching of events for feature tracking, the event streams of
two side-by-side event cameras can also be used to compute
the disparities by correspondence search. Because of the
high temporal resolution of event cameras, event-based
stereo algorithms can leverage the time constraint in addi-
tion to the spatial similarity [38], which is exploited in clas-
sical algorithms [39], [40]. Additionally, using Gabor filters
to extract the orientation of edges, stereo event cameras can
be used for 3D reconstruction [41]. The disparity map be-
tween two rectified event cameras can also be obtained with
cooperative computing [42], [43]. Leveraging deep learning
architectures, stereo depth estimation approaches have been
proposed that encode the event stream in a specialized event
sequence embedding [44], or use a concentration network to
focus event stacks [45]. Beyond the depth estimation task,
stereo event cameras were also employed in the context of
SLAM [46]. Some methods were also proposed for disparity
estimation using a hybrid event and frame camera setup.
They either rely on cross-correlation between binary edge
and event frames combined with a completion network [47],
a fully supervised disparity network [48], a self-supervised
approach based on event-to-image reconstructions [49], or
a two-stage matching network [50]. Recent works have
leveraged the relative camera pose to refine disparity es-
timation [51] or combined it with a maximum shift distance
method [52]. Another direction is the depth prediction based
on a monocular event camera using data-driven approaches
[53], [54], which can also use self-supervision [55], classical
VO/SLAM algorithms [56], [57] or IMUs [58], [59]. Recently,
related work also explored the unique high temporal res-
olution of event cameras for active depth estimation [60],
[61], [62], [63], [64], [65]. In contrast to previous work,
we compute the disparity only at selected features based
on a standard and event camera in a side-by-side setting.

This requires only minor modifications to our proposed
architecture for feature tracking, showcasing the modularity
of our approach.

3 METHOD

Feature tracking algorithms aim to track a given point in a
reference frame in subsequent timesteps. They usually do
this by extracting appearance information around the fea-
ture location in the reference frame, which is then matched
and localized in subsequent ones. Following this pipeline,
we extract an image patch P0 in a grayscale frame for the
given feature location at timestep t0 and track the feature
using the asynchronous event stream. The event stream
Ej = {ei}

nj

i=1 between timesteps tj−1 and tj consists of
events ei, each encoding the pixel coordinate xi, times-
tamp with microsecond-level resolution τi and polarity
pi ∈ {−1, 1} of the brightness change. We refer to [66]
for more information about the working principles of event
cameras.

Given the reference patch P0, our network predicts the
relative feature displacement ∆f̂j during tj−1 and tj using
the corresponding event stream Ej in the local neighbor-
hood of the feature location at the previous timestep tj−1.
The events inside the local window are converted to a dense
event representation Pj , specifically a maximal timestamp
version of SBT [67] where each pixel is assigned the times-
tamp of the most recent event. Once our network has local-
ized the reference patch P0 inside the current event patch
Pj , the feature track is updated, and a new event patch
Pj+1 is extracted at the newly predicted feature location
while keeping the reference patch P0. This procedure can
then be iteratively repeated while accumulating the relative
displacements to construct one continuous feature track.
The overview of our method and our novel frame attention
module are visualized in Fig. 2

In addition to temporal feature tracking, the localization
of the grayscale patch inside the event stream can be ap-
plied to the task of sparse disparity estimation. Instead of
estimating the temporal displacement, the same architecture
can predict the spatial displacement between a 3D point
observed by an event and a standard camera in a side-by-
side setting. This adaptation to the disparity estimation task
allows us to infer the depth of tracked features, which is
vital for VO/SLAM. Given the flexibility of our architecture,
only small modifications are needed for this additional task.

The shared architecture for both feature tracking and
disparity estimation is introduced in Sec. 3.1. Sec. 3.1.1
explains how the feature network processes each track
independently, while Sec. 3.1.2 details the frame attention
module for incorporating global image information. For the
specific network details, we refer to the supplementary.
Our feature tracking supervision with synthetic data and
pose supervision strategy are covered in Sec. 3.2, and the
adaptation of the architecture for disparity estimation is
presented in Sec. 3.3.

3.1 Architecture
3.1.1 Feature Network

To localize the template patch P0 inside the current
event patch Pj , the feature network first encodes both
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Fig. 2. As shown in (a), our event tracker takes as input a reference patch P0 in a grayscale image I0 and an event patch Pj constructed from
an event stream Ej at timestep tj and predicts the relative feature displacement ∆f̂j. Each feature is individually processed by a feature network,
which uses a ConvLSTM layer with state F to process a correlation map Cj based on a template feature vector R0 and the pixel-wise feature maps
of the event patch. To share information across different feature tracks, our novel frame attention module (b) fuses the processed feature vectors
for all tracks in an image using self-attention and a temporal state S, which is used to compute the final displacement ∆f̂j.

patches using separate encoders based on Feature Pyramid
Networks [68]. The resulting outputs are per-pixel feature
maps for both patches that contain contextual information
while keeping the spatial information. To explicitly compute
the similarity measure between each pixel in the event
patch and the template patch, we construct a correlation
map Cj based on the bottleneck feature vector R0 of the
template patch encoder and the feature map of the event
patch, as visualized in Fig. 2. Together with the correlation
map Cj , both feature maps are then given as input to a
second feature encoder in order to refine the correlation
map. This feature encoder consists of standard convolutions,
and one ConvLSTM block [69] with a temporal cell state Fj .
The temporal information is crucial to predicting consistent
feature tracks over time. Moreover, it enables the integration
of the motion information provided by the events. The
output of the feature network is a single feature vector with
spatial dimension 1×1. Up to now, each feature has been
processed independently from each other.
3.1.2 Frame Attention Module

To share information between features in the same im-
age, we introduce a novel frame attention module, which is
visualized in Fig. 2. Since points on a rigid body exhibit
correlated motion in the image plane, there is a substantial
benefit in sharing information between features across the
image. To achieve this, our frame attention module takes
the feature vectors of all patches at the current timestep
tj as input and computes the final displacement for each
patch based on a self-attention weighted fusion of all fea-
ture vectors. Specifically, we maintain a state S for each
feature across time in order to leverage the displacement
prediction of the previous timesteps in the attention fusion.
The temporal information should facilitate the information-
sharing of features with similar motion in the past. This
way, it is possible to maintain vulnerable feature tracks
in challenging situations by adaptively conditioning them
on similar feature tracks. Each input feature vector is first
individually fused with the current state Sj−1 using two
linear layers with Leaky ReLU activations (MLP). All of
the resulting fused features in an image are then used
as key, query, and value pairs for a multi-head attention

layer (MHA) [70], which performs self-attention over each
feature in an image. To facilitate the training, we introduce
a skip connection around the multi-head attention for each
feature, which is adaptively weighted during the training by
a Layerscale layer [71] (LS). The resulting feature vectors are
then used in a simple gating layer to compute the updated
state Sj based on the previous state Sj−1 (GL), see Eq. 3.

Zk
j = MLP ([Fj , Sj−1]) (1)

Z̃k
j = MHA(Zk

j ) (2)

Sj = GL([Sj−1, LS(Z̃
k
j )]) (3)

Finally, the updated state Sj is then processed by one linear
layer to predict the final displacement ∆f̂j.
3.2 Feature Tracking Supervision

In general, the supervision of trackers, extractors, or even
flow networks is still an open research field since datasets
containing pixel-wise correspondences as ground truth are
rare. To make matters worse, there exist even fewer event-
based datasets containing accurate pixel correspondences.
To overcome this limitation, we train our network in the
first step on synthetic data from the Multiflow dataset [72],
which contains frames, synthetically generated events, and
ground truth pixel flow. However, since the noise is not
modeled, synthetic events differ significantly from events
recorded by a real event camera. Thus, in the second step,
we fine-tune our network using our novel pose supervision
loss to close the gap between synthetic and real events.

Synthetic Supervision Synthetic data has the benefit
that it provides ground truth feature tracks. Thus, a loss
based on the L1 distance can be directly applied for each
prediction step j between the predicted and ground truth
relative displacement, see Fig. 2 in the supplementary. It is
possible that the predicted feature tracks diverge beyond
the template patch such that the next feature location is
not in the current search. Thus, if the difference between
predicted and ground truth displacement ||∆f̂j − ∆fj||1
exceeds the patch radius r, we do not add the L1 distances
to the final loss to avoid introducing noise in supervision.
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Our truncated loss Lrp is formulated as follows.

errj =

{
||∆f̂j −∆fj||1 ||∆f̂j −∆fj||1 < r

0 else
(4)

Lrp =

∑
j 1(errj ̸=0)errj∑

j 1(errj ̸=0)
(5)

To reduce the gap between synthetic and real data,
we apply on-the-fly augmentation during training, which
significantly increases the motion distribution. To teach the
network geometrically robust representations, affine trans-
formations W are applied to the current event patch Pj to
obtain an augmented Patch Paug

j at each prediction step,
as formulated in Eq. 6. The augmentation parameters for
rotation, translation, and scale θ = (θr, θt, θs) are randomly
sampled from a uniform distribution at each prediction
step during training. Our tracker T then predicts a relative
displacement ∆f̂augj−1 given the augmented patch Paug

j and
original template patch P0. The loss is then computed
between the predicted displacement ∆f̂augj−1 and the aug-
mented ground truth ∆faugj−1 , which is obtained by applying
the same affine transformation W .

Paug
j = W (Pj,θ) (6)

∆f̂augj−1 = T (P0,P
aug
j ) (7)

∆f̂j−1 = W−1(∆f̂augj−1 ,θ) (8)

The corrected displacement ∆f̂j−1 is then accumulated to
extract the next event patch Pj+1. Our augmentation strat-
egy introduces dynamic trajectories and changes in patch
appearance that improve performance on real data.

Pose Supervision To adapt the network to real events,
we introduce a novel pose supervision loss solely based
on ground truth poses of a calibrated camera. The ground
truth poses can be obtained for sparse timesteps tj using
structure-from-motion algorithms, e.g., COLMAP [73], pos-
sibly combined with inertial measurements [74] or by an
external motion capture system to achieve high robustness
in challenging scenarios. Since our supervision strategy
relies on the triangulation of 3D points based on poses, it
can only be applied in static scenes.

In the first step of the fine-tuning, our network predicts
multiple feature tracks for one sequence. For each predicted
track i, we compute the corresponding 3D point Xi using
the direct linear transform [15], which is explained in the
supplementary. Once the 3D position of Xi is computed,
we can find the reprojected pixel point x̃j for each timestep
tj . The final pose supervision loss is then constructed based
on the predicted feature x̂j and the reprojected feature x̃j

for each available camera pose at timestep tj , as visualized
in Fig. 3. As in the supervised setting of Eq. 5, we use a
truncated loss, which excludes the loss contribution if the
reprojected feature is outside of the event patch.
3.3 Sparse Disparity Estimation

Beyond tracking features over time, our proposed approach
to locate a grayscale image patch within an event voxel
grid can be employed for estimating the sparse disparities
between features captured by an event and a standard
camera in a rectified side-by-side configuration. Similar to
feature tracking, we predict the disparity values for a set

Fig. 3. To adapt our tracker to real event data, our self-supervised loss
computes a triangulated point based on the predicted track, and the
camera poses. The 3D point is then reprojected to each camera plane,
and the L1-distance ℓj between reprojected and predicted point is used
as a supervision signal.

Fig. 4. For the disparity estimation task, our proposed network takes as
input a reference patch P0 in a grayscale image I0 and a rectangular
event patch Pj constructed from an event stream Ej at timestep t0.
Similar to the feature tracking task, our novel frame attention module
enables the information sharing across different features to compute the
final disparity d̂j.

of sparse image points tracked over time, i.e. feature tracks.
The adaptation of our proposed feature tracking method
to disparity estimation offers a fresh perspective on the
task. For instance, although our disparity method does not
have access to full frames, our proposed frame attention
module combines global frame information from the sparse
patches while accumulating temporal information along
feature tracks. Moreover, the disparities of image points
within any given frame share information because of the
natural structure of the 3D world. Therefore, the ability
of the frame attention module to share information across
image features within the same frame can improve the
accuracy and robustness of our disparity estimation.

Our feature tracking methodology seamlessly extends
to disparity estimation with minimal adjustments to the
inputs and network layers. Operating within a rectified
dual-camera setup, the search space in the event stream
is constrained to a single spatial dimension, transforming
the quadratic search patch into a rectangle aligned along
the epipolar lines while keeping a quadratic grayscale patch
as a template. Different from the dynamic event patch Pj

used in feature tracking, we maintain a fixed position for
the rectangular event patch, ensuring coverage across a
predefined disparity range. The fixed position removes the
dependency on the previous disparity estimate, leading to
accelerated data loading and enhanced training stability.
To account for the larger search space, we increase the
contextual information by enlarging the grayscale patch
size from 31 to 63 and using a 61 × 122 event patch. A
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convolution layer with stride two in a single dimension is
applied to both the rectangular correlation Cj and event
feature map, aligning them with the spatial dimension of the
grayscale feature map. Additionally, to introduce positional
information to the sparse event patch, we concatenate the
feature position in the form of a two-channel coordinate
grid to the grayscale template patch. Fig. 4 illustrates the
adapted setup for sparse disparity estimation.

4 FEATURE TRACKING EXPERIMENTS

Datasets We compare our proposed data-driven tracker on
the commonly used Event Camera dataset [75] (EC), which
includes APS frames (24 Hz) and events with a resolution
of 240×180, recorded using a DAVIS240C camera [76]. Ad-
ditionally, the dataset provides ground truth camera poses
at a rate of 200 Hz from an external motion capture sys-
tem. Moreover, to evaluate the tracking performance with
a newer sensor setup, we test our method on the newly
published Event-aided Direct Sparse Odometry dataset [77]
(EDS). Compared to EC, the EDS dataset contains higher res-
olution frames and events (640×480 pixels) captured with a
beam splitter setup. Similar to the EC dataset, it includes
ground truth poses at a rate of 150 Hz from an external mo-
tion capture system. Most scenes in both datasets are static
since the primary purpose of EDS and EC is the evaluation
of camera pose estimation. For the specific finetuning and
testing sequence selection, we refer to the supplementary.

Evaluation To evaluate the different feature trackers,
we first extract features for each sequence with a Harris
Corner detector [78]. Based on the initial feature set, each
tested tracker predicts the feature displacements according
to its specific update rate. Unfortunately, no ground truth
feature tracks are available for EDS and EC. To evaluate the
event-based feature trackers without ground truth, previ-
ous works used tracks predicted by the frame-based KLT
tracker as ground truth. Instead, to increase the accuracy
of KLT tracks, we use an evaluation scheme based on our
proposed pose supervision method. Specifically, the ground
truth tracks are obtained by triangulating KLT tracks using
ground truth poses and reprojecting them afterward to
each of the selected target frames. The triangulation of KLT
tracks has the benefit that minor tracking errors of KLT are
filtered out, leading to geometrically consistent ground truth
tracks. To verify the proposed evaluation, we conducted
an experiment in simulation in which ground truth feature
tracks are available. In this simulated setup, we computed
the Pearson correlation between the KLT reprojected error
and the ground truth feature tracks, which was 0.716. This
indicates a significant correlation between our proposed
evaluation technique and ground truth feature tracks ver-
ifying the effectiveness of our evaluation technique.

Since each tested tracker has its update rate, we lin-
early interpolated all feature tracks to the ground truth
pose timesteps in order to compute the evaluation metric.
Furthermore, to effectively test the event-based tracking
abilities of the methods, we do not update the feature
templates during evaluation. In addition, we deactivate
any terminal criterion and report the time until the feature
exceeds a certain distance to the ground truth, known as
the feature age. Instead of choosing one error threshold

as done in previous work [3], we evaluate the resulting
tracks for multiple error thresholds in a range from 1 to
31 pixels with a step size of 1 pixel. Thus, we do not
report the endpoint error since we test each trajectory with
different error thresholds, which effectively incorporates the
distance error into the feature age. As a first performance
metric, we compute the tracked feature age normalized by
the ground truth track duration in order to account for
different trajectory lengths. However, since some feature
tracks are lost immediately in the beginning, we report the
feature age of stable tracks, i.e., we discard feature tracks
lost during the early phase of the sequence for the feature
age computations. The second error metric accounts for the
lost tracks by taking the ratio of stable tracks and ground
truth tracks. This ratio is then multiplied by the feature
age, which gives us the expected feature age as the second
performance metric. This metric combines the quality and
the number of feature tracks tracked by a method. For more
information about the two performance metrics, we refer to
the supplementary.

Training Schedule As mentioned in Sec. 3, we first train
our models supervised on the Multiflow [72] dataset on
30000 feature tracks in a continual learning fashion with a
learning rate of 1× 10−4 using the ADAM optimizer [79] to
gradually adapt the network recurrence to longer trajectory
lengths. Starting initially from 4 unroll steps, we progres-
sively increase the number of unroll steps to 16 and then
24 after 80000 and 120000 training steps, respectively. After
training on Multiflow, we finetune our model using our
novel supervision method for 700 optimization steps with
a reduced learning rate of 1 × 10−6 on specific training se-
quences of both datasets, which are not used for evaluation.

4.1 Aligned Events and Frames Tracker

Baselines We compare our method against the current
state-of-the-art method EKLT [2], which extracts a template
patch from a grayscale image for each feature and tracks
the feature with events, similar to our tracker. As another
tracker relying on grayscale template patches, we also run
the ICP [4] tracker used for event-based visual odometry. In
addition, we evaluate against the pure event-based trackers
HASTE [3] and EM-ICP [5]. For EKLT, HASTE, and EM-
ICP, we adopted the publicly available code to run the
experiments. The implementation of ICP was taken from
a related work [18]. The hyper-parameters of all methods
were tuned for the specific datasets, which required multiple
hours to achieve optimal performance.

EC Results On the commonly used event-based tracking
benchmark, EC, our proposed data-driven method with
grayscale template patch, i.e., Ours (zero-shot) and Ours
(fine-tuned), outperforms the other baselines in terms of
non-zero feature age and expected feature age, see Tab. 1.
The second best approach is EKLT, which tracked the fea-
tures for a duration similar to our proposed method as
represented by the non-zero feature age metric in Tab. 1.
However, our method was able to track more features from
the initial feature set as reported by the expected feature
age. The higher ratio of successfully tracked features and
the longer feature age makes our method better suited for
downstream tasks such as pose estimation [73]. The top row
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TABLE 1
The performance of the evaluated trackers on the EDS and EC dataset are reported in terms of "Feature Age (FA)" of the stable tracks and the

"Expected FA", which is the multiplication of the feature age by the ratio of the number of stable tracks over the number of initial features.

EDS EC

Method Frames Feature Age (FA) ↑ Expected FA ↑ Feature Age (FA) ↑ Expected FA ↑
ICP [4] no 0.060 0.040 0.256 0.245
EM-ICP [5] no 0.161 0.120 0.337 0.334
HASTE [3] no 0.096 0.063 0.442 0.427
EKLT [2] yes 0.325 0.205 0.811 0.775
Ours (zero-shot) yes 0.549 0.451 0.795 0.787
Ours (fine-tuned) yes 0.576 0.472 0.825 0.818
Ours E2VID (transfer) no 0.524 0.435 0.709 0.695
Ours E2VID (zero-shot) no 0.579 0.482 0.793 0.781
Ours E2VID (fine-tuned) no 0.589 0.495 0.794 0.786

of Fig. 5 shows that our method produces a higher number
of smooth feature tracks compared to the closest baselines
EKLT and HASTE. As expected, a performance gap exists
between pure event-based methods (HASTE, EM-ICP) and
methods using grayscale images as templates (Ours, EKLT).
This confirms the benefit of leveraging grayscale images to
extract template patches, which are subsequently tracked by
events.

EDS Results Similar to the performance on the EC
dataset, our proposed method with grayscale template
patch, i.e., Ours (zero-shot) and Ours (fine-tuned), outper-
forms all of the existing trackers on the EDS dataset with
an even larger margin in terms of both non-zero feature
age and expected feature age as reported in Tab. 1. The
significant performance boost confirms the capability of our
data-driven methods to deal with high-resolution data in
various 3D scenes with different lighting conditions and
noise patterns. Since a beam splitter setup was used to
record the data for the EDS dataset, there are misalignment
artifacts between events and images, as well as low-light
noise in the events due to the reduction of the incoming
light. Additionally, the EDS includes faster camera motions
leading to an overall lower tracking performance of all
methods compared to the EC dataset. Nevertheless, our
learned method is able to deal with these different noise
sources and still predict smooth feature tracks for a large
number of features, as shown in the middle and bottom
row of Fig. 5. For more qualitative examples, we refer to
the supplementary. In addition to the performance gain, our
method does not require hours of manual fine-tuning to
transfer the tracker from small resolution to high-resolution
event cameras with different contrast threshold settings.
Finally, our event-based tracker can provide robust feature
tracks during periods of high-speed motion in which the
frames suffer from motion blur, as illustrated in Fig. 1. This
high-rotational motion sequence was recorded by us with a
beam splitter setup.

Runtime Comparison To employ a feature tracker in
real-world applications, it is crucial to provide feature dis-
placement updates with low latency. Therefore, we report
the runtime of the different evaluated methods in terms
of the real time factor, i.e., compute time divided by the
time of the received data, versus tracking performance in
Fig. 6. It should be noted that most of the evaluated trackers
were not implemented for run time efficiency and thus are
coded in different programming languages, which makes a

Fig. 5. Qualitative tracking predictions (blue) and ground truth tracks
(green) for the EC dataset (top) and EDS dataset (middle / bottom).
Our method predicts more accurate tracks for a higher number of initial
features.

fair comparison hard. Moreover, we tuned all the methods
with a focus on the tracking performance, which explains
the high runtime of EKLT since we significantly increased
the number of optimization iterations. Nevertheless, the
runtime comparison of the different methods still provides
a rough picture of the inference speed of each method.
In the case of HASTE, we additionally report the runtime
for an ideal HASTE implementation, named HASTE* in
Fig. 6. The ideal HASTE* assumes perfect parallelization
of the current code framework of HASTE, which tracks
each feature sequentially. Even without optimizing the code
for deployment, our method achieves close to real-time
performance on EC and is the fastest method on EDS while
having a significantly higher tracking performance. On EDS,
our method takes 17ms to process, on average, 19.7 patches
in parallel, while it takes 13ms for 14.2 patches on EC using
an Nvidia Quadro RTX 8000 GPU. The fast inference of
our method can be explained by the batch-wise processing
and the highly parallelized framework for deep learning
architectures. This shows the potential of our method for
real-world applications

Combination with frame-based KLT In a step to com-
bine the contextual information of grayscale images and
the high-latency information from events, we extended
our event-based tracker using the popular KLT tracker
for frames. Specifically, we use our event tracker to track
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Fig. 6. The two plots show the tracking performance in terms of ex-
pected feature age in relation to the real-time factor, which is the ratio
of compute time over track time. Thus, the top left corner represents
the goal. Additionally to the existing implementation of HASTE, we
also report the ideal HASTE*, which assumes perfect parallelization for
processing all feature tracks.

Fig. 7. The tracking performance of KLT and our tracker combined with
KLT (Ours+KLT) in relation to pixel motion per frame. In combination, our
event-based tracker can successfully help KLT predict larger displace-
ment while KLT can refine the predictions of our tracker.

features during the blind time between two frames and use
the displacement prediction of our tracker as an initial guess
for the KLT tracker once a new frame arrives. This has the
benefit of effectively mitigating the negative effects of large
baselines between two frames caused by high-speed motion.
The improved tracking performance is reported in Fig. 9 and
further discussed in the supplementary material.

Ablations We present ablation studies in the supplemen-
tary to demonstrate the benefits of the training augmenta-
tion, the frame attention module, and other network design
choices. In the supplementary, we also report the results
for the input representation and augmentation parameters
ablations.
4.2 Tracker Without Frames

To eliminate the requirement for two spatially aligned
cameras, we tested our approach by replacing grayscale im-
ages with event-to-frame reconstructions using E2VID [80].
In Tab. 1, we report the performance of our tracker under
three training settings, with evaluations always conducted
on E2VID reconstructions: (i) trained with grayscale frames,
denoted as Ours E2VID (transfer); (ii) trained with E2VID
reconstructions, denoted as Ours E2VID (zero-shot); and
(iii) trained and fine-tuned with E2VID reconstructions,
employing our pose supervision technique, denoted as Ours

E2VID (fine-tuned).
EC Results Our event-only tracker outperforms other

event-based trackers on the EC dataset, although falling
short of the performance of EKLT, which uses both events
and frames. Similar to our method with grayscale frames,
our proposed pose supervision technique enhances the per-
formance of our pure event-based tracker. As expected,
training on E2VID reconstructions leads to better perfor-
mance compared to training on grayscale images and sub-
sequently transferring to E2VID images during inference.

EDS Results On the EDS dataset, all of our trackers
using E2VID reconstructions significantly outperform the
baselines. Interestingly, our trackers trained with E2VID
reconstructions exceed the performance of our model lever-
aging grayscale frames. This discrepancy can be attributed
to slight misalignments between events and frames caused
by the beam splitter setup employed in the EDS dataset. This
explanation is supported by results from the EC dataset,
where the DAVIS sensor ensures perfect alignment.

Runtime Using E2VID requires a constant runtime of
153.33ms for each reconstructed frame. However, the E2VID
reconstructions can be generated in parallel with the event
tracker updates. In this setup, the event tracker continues
to use the previous E2VID template patch while the new
E2VID frame is generated, replacing it once the reconstruc-
tion is complete. Therefore, assuming perfect parallelization,
the latency and runtime of the event tracker will not be
influenced by the E2VID reconstruction.
5 DISPARITY ESTIMATION EXPERIMENTS

TABLE 2
The disparity metrics on M3ED and the runtime that is required to

process the tracks in one frame.

Disparity Metrics Runtime

Method MAE ↓ RMSE ↓ 1PE ↓ 4PE ↓ [ms] ↓
FEStereo [51] 0.962 3.016 0.145 0.023 25.2
CREStereo [81] 0.920 1.829 0.247 0.033 354.8
Ours 0.813 1.209 0.269 0.011 8.7

Datasets To train our disparity network, we leverage
the M3ED dataset [82] featuring real-world scenes recorded
with a stereo event and frame camera pair mounted on
a quadrotor, a car, and a quadruped robot. The dataset
comprises diverse environments such as forest, urban, and
indoor settings, providing a wide variety of scenes for
training and testing. For our approach, the left event and the
left standard camera are used for a vertically rectified event
and standard camera setup. Ground truth feature tracks
are generated using a Harris detector for feature detection,
followed by tracking with a KLT tracker, which is combined
with the depth and ground truth poses provided along
the dataset. Specifically, we perform forward tracking and
subsequent backward tracking through the sequence using
the KLT tracker on the frames to increase the duration of
the feature tracks. For each tracking step, the 3D positions
of the feature tracks are updated whenever depth informa-
tion is available. The reprojected 3D points serve as initial
estimates for the KLT tracker and as termination criteria.
Tracks are terminated when the error between tracked and
reprojected points exceeds 3 pixels. This approach ensures
the generation of high-quality feature tracks complemented
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Fig. 8. The tracks on the M3ED dataset are colorized based on their
corresponding disparity values, ranging from blue to red to represent
small to large disparity values.

by accurate depth information for each track, see Fig. 8.
During training, we randomly sample twelve tracks with a
length of 20 frame timesteps. To minimize overlap between
sampled training batches, a margin of 10 timesteps is intro-
duced between selected starting frames.

Evaluation For the test dataset, we employ the same
technique used to construct the training dataset with the
modification of selecting 16 feature tracks per starting frame
and disregarding any additional tracks. This adjustment
ensures a more balanced test set since frames with a high
number of tracks will contribute only 16 feature tracks. This
results in a total of 1368 starting frames, each containing 16
feature tracks spanning a duration of 20 frames. The specific
sequences used for training, validation, and test splits are
listed in the supplementary material. In our evaluation,
we compare the methods using common disparity metrics,
including mean absolute error (MAE), root mean square
error (RMSE), and the ratios of disparity errors exceeding
one and four pixels (1PE / 4PE).

Training Similarly to the training of the learned feature
tracker, we train the disparity network using the ADAM
optimizer [79] with a learning rate of 1 × 10−4 and use the
L1 loss between the predicted and ground truth disparity.
Unlike the feature tracker, the search patch for the disparity
network is not dependent on previous network predictions.
As a result, there is no requirement for continual learn-
ing with increasing sequence length, allowing us to begin
directly with 20 timesteps. We adopt a batch size of four,
resulting in the update of 48 tracks per batch, considering
the 12 tracks per frame.

5.1 Benchmark Results

Baselines We evaluate our approach against existing meth-
ods that exploit the global context of both event repre-
sentations and images. This setup differs from ours, as
the global context offers considerably more information
compared to the cropped patches used in our method. As
our first baseline, we compare against the Frame-Event
Stereo Matching module (FEStereo) from the DC-FEStereo
approach [51], which is inspired by the design of an event
stereo method [83]. The other two modules of the DC-
FEStereo method rely on ground truth poses and, therefore,
are not applicable to our setting. As our second baseline, we

use the stereo image approach CREStereo [81] by converting
the event streams first to frames using E2VID [80]. Both
baselines are trained on the M3ED dataset with the pro-
vided sparse ground truth depth. We adopt the respective
designed loss functions for the baselines and use default
parameters for both approaches, except for the batch size
of CREStereo, which we adjust to three to accommodate
processing full-resolution images.

Results Our sparse disparity network outperforms the
dense baselines FEStereo and CREStereo in terms of MAE
and RMSE, see Tab. 2. However, FEStereo and CREStereo
have a lower ratio of disparity errors above 1 pixel, whereas
our method only achieves better performance at error ratios
above 4 pixels. This indicates that both baselines predict
more accurate disparities for a high portion of the tested
tracks while suffering from large outlier errors, which also
explains the high RMSE value. The large outliers can
be explained by the initialization of feature tracks with a
Harris detector, which results in features mostly located at
depth discontinuous between foreground and background.
Our method leverages the temporal context specific to the
feature tracks, which makes the distinction between fore-
and background easier and thus reduces the outliers.

A potential downside of using a stereo system with a
frame camera is the decreasing frame quality in challenging
scenarios. However, if the downstream task of pose estima-
tion is considered, our event-based feature tracker can be
used to track features while localizing in a map constructed
with the sparse disparity module using frames captured
under better conditions.

Runtime Comparison The significant benefit of our
method lies in the sparse patch processing, resulting in sig-
nificantly faster runtimes compared to the dense baselines,
as reported in Tab. 2. Processing 16 tracks with our method
requires only 8.7ms, compared to the 25.2ms required by the
dense FEStereo method to process a full image. Our method
is even 40 times faster compared to the E2VID+CREStereo
approach, which requires running E2VID (153.33ms) and
CREStereo (201.48ms) sequentially. Since our network
processes feature tracks mostly in parallel, there is only
a small runtime increase when scaling up the number of
tracks, as reported in the supplementary.

Stereo-VO To provide an initial evaluation of the effec-
tiveness of our approach for pose estimation as a down-
stream task, we construct a basic stereo-VO pipeline. Sim-
ilarly to the disparity evaluation, we test on the M3ED
dataset by leveraging the same features detected with
the Harris detector. First, the detected features are back-
projected into 3D space by using either disparities predicted
by our method or the ground truth disparity. Next, the
3D map is used to localize the camera at the subsequent
timesteps by either using the ground truth features tracks
or the feature tracks computed with our proposed event-
based feature tracker combined with frames, see Sec. 8.
Camera pose estimation was performed using the PnP algo-
rithm [84], which aligns 3D points with their corresponding
2D image points.

To assess the impact of our disparity estimation method
and our tracker, we conduct tests where either the disparity
or the feature tracks were replaced with ground truth data.
Table 3 reports the pose estimation performance in terms
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TABLE 3
Stereo VO performance using feature tracks from our tracker (Pred

Tracks) or ground truth tracks (GT Tracks), combined with either
predicted disparities (Pred Disp) or ground truth disparities (GT Disp).

Method ATE Trans.
[m] ↓

ATE Rot.
[◦] ↓

GT Tracks / Pred Disp 0.024 2.05
Pred Tracks / GT Disp 0.025 1.61
Pred Tracks / Pred Disp 0.033 1.74

of Absolute Trajectory Error for translation (ATE Trans.)
and rotation (ATE Rot.). Using ground truth tracks with
predicted disparities achieves the lowest translational error
but the highest rotational error, both of which remain small.
Replacing predicted disparities with ground truth (Pred
Tracks / GT Disp) yields a similar ATE Trans. of 2.5 cm
while reducing rotational error. The performance of the full
stereo VO pipeline (Pred Tracks / Pred Disp) is within 8 mm
of pipelines incorporating ground truth data, demonstrating
the effectiveness of our approach for pose estimation.

6 CONCLUSION

We presented the first data-driven feature tracker for event
cameras, which leverages low-latency events to track fea-
tures detected in a grayscale frame. Our tracker is designed
to operate with both a spatially aligned image and event
camera setup, as well as a single event camera setup.
With our novel frame attention module, which fuses in-
formation across feature tracks, our tracker outperforms
state-of-art methods on two datasets while being faster
in terms of inference time. Furthermore, our proposed
method does not require intensive manual parameter tuning
and can be adapted to new event cameras with our self-
supervision strategy. Ultimately, we can combine our event-
based tracker with a KLT tracker to predict stable tracks
in challenging scenarios. This combination of standard and
event cameras paves the path for the concept of sparingly
triggering frames based on the tracking quality, which is
a critical tool for future applications where runtime and
power consumption are essential. Finally, the proposed
tracker seamlessly extends to sparse disparity estimation
between an event and an image camera in a side-by-side
setup, thereby providing the depth of each feature track.

ACKNOWLEDGMENTS

The authors want to thank Javier Hidalgo-Carrió for the
support of the EDS dataset. This work was supported by
the Swiss National Science Foundation through the Na-
tional Centre of Competence in Research (NCCR) Robotics
(grant number 51NF40_185543), and the European Research
Council (ERC) under grant agreement No. 864042 (AGILE-
FLIGHT).

Appendix: Data-driven Feature Track-
ing for Event Cameras with and without
Frames
7 FUTURE WORK & LIMITATIONS

Since the EC and EDS datasets were recorded to bench-
mark pose estimation algorithms, they only contain static

TABLE 4
Ablation experiments on the EDS and EC dataset.

Expected FA ↑

Method EDS EC
Reference Model 0.383 0.787

w/o correlation 0.341 0.684
w/o recurrence 0.301 0.606
w/o augmentation 0.178 0.599

Ref + Frame Attention 0.451 0.787
w pose supervision 0.471 0.818
w/o state 0.385 0.791
w LSTM 0.423 0.661

scenes. Thus, we did not evaluate how our method, and
especially our frame attention module performs in scenes
with dynamic objects. Nevertheless, we believe that our
frame attention module can be useful for other trackers
using event or standard cameras. Finally, our method relies
on the quality of the feature detection in grayscale images,
which can suffer in challenging scenarios. However, our
self-supervision strategy opens up the possibility of also
fine-tuning feature detectors for event cameras to increase
the robustness of feature detection.

7.1 Ablations

We ablate each network block using a reference model with-
out the frame attention module and grayscale inputs, see
Tab. 4. As verified by the performance drop (w/o augmen-
tation), the augmentations during the training on synthetic
data significantly boost the zero-shot transfer from synthetic
to real-world data. Furthermore, the recurrence in the fea-
ture encoder leads to longer feature age (w/recurrence),
which is also achieved on a smaller scale by introducing
the correlation map (w/o correlation). While there is no
improvement on the EC dataset, our proposed frame atten-
tion module significantly improves the performance on the
challenging sequences of EDS. This performance increase
confirms the benefit of sharing information between similar
feature tracks for challenging scenarios. By adapting our
network based on the frame attention module (Ref+Frame
Attention) to real data using our self-supervision scheme,
we achieve the highest tracking performance. Finally, the
frame attention module relies on state variables (w/o state)
to fully exploit the potential of sharing information across
features in a frame. Using a more complex LSTM for in-
formation propagation leads to overfitting, as shown by its
lower End-Point-Error on simulated training data (0.569 vs.
0.720 for the default gating network).

8 COMBINATION OF EVENTS AND FRAMES

In a step to combine the contextual information of grayscale
images and the high-latency information from events, we
extended our event-based tracker using the popular KLT
tracker for frames. Specifically, we use our event tracker to
track features during the blind time between two frames and
use the displacement prediction of our tracker as an initial
guess for the KLT tracker once a new frame arrives. This
has the benefit of effectively mitigating the negative effects
of large baselines between two frames caused by high-
speed motion. Additionally, the combination with our event
tracker provides feature positions for the time in between
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Fig. 9. The tracking performance of KLT and our tracker combined with
KLT (Ours+KLT) in relation to pixel motion per frame. In combination, our
event-based tracker can successfully help KLT predict larger displace-
ment while KLT can refine the predictions of our tracker.

two frames, significantly increasing the frequency of feature
position updates. On the other side, the KLT tracker can
correct the feature position once reliable frame information
is available. As used for the ground truth creation based on
the camera poses, we use a KLT tracker with three hierar-
chical scales to cope with larger motion. We compare the
combination of our method and the KLT tracker (ours+KLT)
against the pure KLT tracker for different pixel motions
between frames, as reported in Fig. 9 The different pixel
motions are achieved by skipping frames in a sequence of
the EC dataset, which corresponds to increasing the pixel
motion between two frames. As can be seen in Fig. 9,
the combination of ours and KLT performs comparably to
a pure KLT tracker for small pixel displacement between
frames. However, with increasing pixel motion, the initial
guess provided by our method helps the KLT tracker to
track features over a longer time duration than a KLT tracker
alone.

9 SUPERVISION

9.1 Synthetic Supervision

On the Multiflow dataset, a loss based on the L1 distance
can be directly applied for each prediction step j between
the predicted and ground truth relative displacement, see
Fig. 10. It is possible that the predicted feature tracks di-
verge beyond the template patch such that the next feature
location is not in the current search. Thus, if the differ-
ence between predicted and ground truth displacement
||∆f̂j − ∆fj||1 exceeds the patch radius r, we do not add
the L1 distances to the final loss to avoid introducing noise
in supervision. Our truncated loss Lrp is formulated as
follows.

errj =

{
||∆f̂j −∆fj||1 ||∆f̂j −∆fj||1 < r

0 else
(9)

Lrp =

∑
j 1(errj ̸=0)errj∑

j 1(errj ̸=0)
(10)

9.2 Pose Supervision

To adapt the network to real events, we introduce a novel
pose supervision loss solely based on ground truth poses

Fig. 10. The L1 distance ℓj between the predicted ∆f̂j and the ground
truth displacement ∆fj is used as a truncated loss, which is set to zero
if the ground truth feature is outside of the current event patch Pj , as
shown for timestep tj+k.

of a calibrated camera. The ground truth poses can easily
be obtained for sparse timesteps tj using structure-from-
motion algorithms, e.g., COLMAP [73], or by an external
motion capture system. Since our supervision strategy relies
on the triangulation of 3D points based on poses, it can only
be applied in static scenes.

In the first step of the fine-tuning, our network predicts
multiple feature tracks for one sequence. For each predicted
track i, we compute the corresponding 3D point Xi using
the direct linear transform [15]. Specifically, for each feature
location xj, we can write the projection equation assuming
a pinhole camera model using the camera pose, represented
as a rotation matrix Rtj and a translation vector Ttj , at
timestep tj , and the calibration matrix K, see Eq. 11. The
resulting projection matrix can be expressed as matrix Mj

consisting of column vectors mkT
j with k ∈ {1, 2, 3}.

xj = K[Rtj |Ttj ]Xj = MjXj =

m
1T
j

m2T
j

m3T
j

Xi (11)

Using the direct linear transform, we can reformulate the
projection equations as the homogenous linear system in
Eq. 12. By using SVD, we obtain the 3D point Xj , which
minimizes the least square error of Eq. 12.ujm

3T
j −m2T

j

m1T
j − vjm

3T
j

...

 = AXi = 0 (12)

Once the 3D position of Xi is computed, we can find
the reprojected pixel point x̃j for each timestep tj using
perspective projection Eq. 11. The final pose supervision loss
is then constructed based on the predicted feature x̂j and
the reprojected feature x̃j for each available camera pose at
timestep tj . As in the supervised setting of Eq. 10, we use
a truncated loss, which excludes the loss contribution if the
reprojected feature is outside of the event patch.

10 DATASET SPLIT

We use five sequences from the Event Camera dataset [75]
(EC) and four sequences from the Event-aided Direct Sparse
Odometry dataset [77] (EDS) as test sequences. For fine-
tuning, our pose supervision strategy is performed on five
sequences from the EC and one sequence from the EDS
dataset since EDS does not contain many sequences with
ground truth pose in well-lit conditions. The overview of
the test and fine-tuning sequences is shown in Tab. 5.
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TABLE 5
Test and fine-tuning sequences for the EC and EDS dataset.

Dataset Sequence Name Frames

Te
st

EC

Shapes Translation 8-88
Shapes Rotation 165-245
Shapes 6DOF 485-485
Boxes Translation 330-410
Boxes Rotation 198-278

EDS

Peanuts Light 160-386
Rocket Earth Light 338-438
Ziggy In The Arena 1350-1650
Peanuts Running 2360-2460

Fi
ne

-T
un

in
g

EC

boxes_hdr all
calibration all
poster_6dof all
poster_rotation all
poster_translation all

EDS all_characters all

For the disparity experiments on the M3ED dataset [82],
we use in total of 33 sequences for training, 10 for validation,
and 12 for testing. The specific sequences are listed in Tab. 6.

TABLE 6
Training, Validation and Test split for the M3ED dataset.

Sequence Name

Tr
ai

ni
ng

falcon_indoor_flight_2 car_urban_day_penno_small_loop
spot_outdoor_day_srt_under_bridge_2 falcon_forest_into_forest_4
falcon_forest_road_1 spot_indoor_stairwell
falcon_indoor_flight_1 spot_outdoor_day_srt_under_bridge_1
falcon_outdoor_day_penno_parking_2 spot_outdoor_day_skatepark_2
falcon_forest_into_forest_1 falcon_forest_up_down
car_urban_day_ucity_small_loop spot_outdoor_day_art_plaza_loop
car_urban_night_city_hall car_urban_day_penno_big_loop
falcon_outdoor_day_penno_parking_1 spot_forest_easy_1
car_urban_night_ucity_small_loop spot_outdoor_day_skatepark_1
falcon_forest_road_2 car_urban_night_rittenhouse
falcon_outdoor_night_penno_parking_1 spot_forest_road_1
car_forest_into_ponds_short car_urban_day_rittenhouse
car_urban_night_penno_small_loop_darkercar_urban_night_penno_small_loop
falcon_outdoor_night_penno_parking_2 spot_forest_hard
car_urban_day_city_hall car_urban_night_penno_big_loop
spot_outdoor_day_rocky_steps

V
al

id
at

io
n falcon_outdoor_day_fast_flight_1 spot_outdoor_night_penno_short_loop

falcon_indoor_flight_3 spot_outdoor_day_penno_short_loop
spot_indoor_stairs car_forest_into_ponds_long
falcon_forest_into_forest_2 spot_forest_road_3
spot_indoor_building_loop spot_forest_easy_2

Te
st

car_forest_sand_1 falcon_outdoor_night_high_beams
falcon_forest_road_forest falcon_outdoor_day_penno_trees
car_forest_tree_tunnel spot_indoor_obstacles
falcon_outdoor_day_penno_cars spot_outdoor_night_penno_plaza_lights
falcon_outdoor_day_fast_flight_2 car_urban_day_horse
spot_outdoor_day_srt_green_loop falcon_outdoor_day_penno_plaza

11 MULTIFLOW DATASET

To qualitatively show the gap between the simulated and
the real data, we visualize in Fig. 11 some examples from
the Multiflow dataset [72], including the ground truth tracks
corresponding to the extracted Harris features [78]. This
sim-to-real gap can be reduced with our augmentation
strategies on the Multiflow dataset and with our proposed
fine-tuning strategy on real data, see Sec. 3.2.

12 NETWORK ARCHITECTURE DETAILS

Tab. 7 shows the architectural details of our proposed net-
work, which consists of a feature network and our pro-
posed frame attention module. In the first step, two patch
encoders inside the feature network process the event and
the grayscale patches, which have a patch size of 31 pixels.
After the correlation and the concatenation of the feature

maps from both patch networks, a joint encoder refines the
correlation map and introduces temporal information shar-
ing through a ConvLSTM layer. Finally, the frame attention
module processes each feature in one frame using shared
linear layers and one global multi-head attention over all
features in a frame. We refer to Fig. 2 in the main paper for
the network overview.

TABLE 7
Network architecture. Each convolution layer is followed by LeakyReLU

and BatchNorm layers whereas the linear layers are followed by
LeakyReLu layers. For the upsampling layers (Up), we use bilinear

interpolation. The three numbers after each convolution layer indicate
the two kernel dimensions and the output channel dimension. In the

case of the linear layer, the single number stands for the output
channels.

Layer Spatial Size

Fe
at

ur
e

N
et

w
or

k
(2
×

Pa
tc

h
En

co
de

rs
+

Jo
in

tE
nc

od
er

) 2× Conv2D 1×1×32 31×31
2× Conv2D 5×5×64 23×23
2× Conv2D 5×5×128 15×15
2× Conv2D 3×3×256 5×5
2× Conv2D 1×1×384 1×1
2× Conv2D 1×1×384 1×1
Up + Conv2D 1×1×384 5×5
Conv2D 3×3×384 5×5
Up + Conv2D 1×1×384 15×15
Conv2D 3×3×384 15×15
Up + Conv2D 1×1×384 23×23
Conv2D 3×3×384 23×23
Up + Conv2D 1×1×384 31×31
Conv2D 3×3×384 31×31
2× Conv2D 3×3×384 31×31

Correlation Layer 31×31
2× Conv2D 3×3×128 31×31

2× Conv2D 3×3×64 15×15
2× Conv2D 3×3×128 7×7
ConvLSTM 3×3×128 7×7
2× Conv2D 3×3×256 3×3
Conv2D 3×3×256 1×1

Fr
am

e
A

tt
en

ti
on Linear 256 1×1

Linear 256 1×1
MultiHead Attention 1×1
LayerScale 256 1×1
Linear Gating 256 1×1
Linear 2 1×1

13 QUANTITATIVE RESULTS & TRACKING MET-
RICS

As done in previous works [2], [3], we directly compare
feature tracking metrics for a feature tracking methodology
instead of computing pose errors using a pose estimation
module. While pose estimation is one application, it requires
the tuning of many hyperparameters specifically for the
tracker. Thus, it complicates evaluation and produces biased
results.

As tracking metrics, we report for each test sequence
from the EC and EDS dataset the expected feature age in
Tab. 8, the feature age in Tab. 9, the inlier ratio in Tab. 10 and
the normalized tracking error in Tab. 11. For the normalized
tracking error, we terminate the track if the distance to the
ground truth exceeds 5 pixels, as done in [3]. However, it is
not obvious how to compute this metric if the tracking error
is higher than 5 pixels directly after the initialization, as it
occurred for the baseline methods in Tab. 11. Furthermore,
this metric does not consider the duration of the predicted
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Fig. 11. Samples from the Multiflow dataset including the ground truth tracks corresponding to extracted Harris features.

tracks, e.g., one feature can be tracked for a short time dura-
tion with a small tracking error, which would lead to a small
normalized tracking error. In contrast, a feature tracked for
a long time horizon but with a higher distance to the ground
truth will be assigned a higher tracking error. This example
shows that the normalized tracking error on its own is not
necessarily a good metric to evaluate stable and long feature
tracks. Thus, we decided to report the expected feature age as
a metric since it considers the tracking duration and the
number of tracked features. Moreover, the expected feature
age is computed over a range of termination thresholds with
respect to the ground truth, which effectively eliminates this
hyperparameter for the metric computation. Specifically, the
expected feature age represents the multiplication of the nor-
malized feature age with the fraction of successfully predicted
tracks over the number of given feature locations, defined
as inlier ratio. A feature is defined to be tracked successfully
if the predicted feature location at the second timestep after
initialization is in the termination threshold to the ground
truth location. The normalized feature age is computed for
the successfully tracked features based on the division of
the time duration until the predicted feature exceeds the
termination threshold to the ground truth location by the
duration of the ground truth tracks. Because of the range
of termination thresholds and the consideration of the num-
ber of successfully tracked features, the expected feature age
represents an expressive and objective metric for reporting
the tracking performance. Compared to [25], we evaluate
the tracking performance and thus use the same features for
each method. Furthermore, our evaluation focuses on the
introduced Expected Feature Age to account for the impact
of outliers, which is typically ignored.

14 INPUT EVENT REPRESENTATION

For the aligned grayscale and event tracker setting, our
method uses spatially and temporally aligned frames and
events similar to previous works [2]. This data can be
recorded by cameras outputting directly events and images
with one sensor (ATIS) or with beam splitter setups using
two cameras aligned through a mirror setup. To provide
the events in a patch as input to our network, we first

convert them to a dense event representation. Specifically,
we use a maximal timestamp version of SBT [67], named
SBT-Max, which consists of five temporal bins for positive
and negative polarity leading to 10 channels. Because of
these design choices, the used event representation can be
considered a combination between TimeSurface [86] and
SBT [67]. In each temporal bin, we assign to each pixel
coordinate the relative timestamp of the most recent event
during the time interval of the temporal bin. For the EC
and EDS dataset, we convert events inside a 10 ms and 5 ms
window, respectively.

15 ADDITIONAL ABLATION EXPERIMENTS

We ablated the event input representation as well as the
augmentation parameters used during training. Due to time
reasons, we performed the following ablation experiments
by training the reference model, which does not include the
frame attention module, for 70000 steps instead of 140000.

15.1 Input Representations
The input event representation to an event-based network
is an important consideration. Ideally, we aim to preserve as
much of the spatiotemporal information as possible while
minimizing the computational overhead of representation
generations. We train the reference network with different
representations: voxel grids [85], Stacking Based on Time
(SBT) [67], a non-normalized version of SBT (SBTNo Norm)
and a maximal timestamp version of SBT we call SBT-Max
where each pixel is assigned the timestamp of the most
recent event. The results are shown in Tab. 12. While many
event-based networks have demonstrated promising results
with voxel grids, their interpolation-based construction is
computationally expensive. In contrast, SBT is a simpler,
synchronous event representation that is more efficient.
Each pixel simply accumulates or "stacks" incoming events.
We find that SBT achieves competitive Expected FA com-
pared to voxel grids on nearly all sequences. However, the
performance of SBT degrades significantly without normal-
izing based on the number of events in the frame. In contrast
to normalizing by the number of events, SBT-Max is nor-
malized using the duration of the time window. In practice,
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TABLE 8
The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Expected Feature Age.

Expected FA ↑

Sequence ICP [4] EM-ICP [5] HASTE [3] EKLT [2] Ours
Shapes Translation 0.306 0.402 0.564 0.740 0.856
Shapes Rotation 0.339 0.320 0.582 0.806 0.793
Shapes 6DOF 0.129 0.242 0.043 0.696 0.882
Boxes Translation 0.261 0.354 0.368 0.644 0.869
Boxes Rotation 0.188 0.349 0.447 0.865 0.691
EC Avg 0.245 0.334 0.427 0.775 0.818
Peanuts Light 0.044 0.077 0.076 0.260 0.420
Rocket Earth Light 0.045 0.158 0.085 0.175 0.291
Ziggy In The Arena 0.039 0.149 0.057 0.231 0.746
Peanuts Running 0.028 0.095 0.033 0.153 0.428
EDS Avg 0.040 0.120 0.063 0.205 0.472

TABLE 9
The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Feature Age FA.

Feature Age (FA) ↑

Sequence ICP [4] EM-ICP [5] HASTE [3] EKLT [2] Ours
Shapes Translation 0.307 0.403 0.589 0.839 0.861
Shapes Rotation 0.341 0.320 0.613 0.833 0.797
Shapes 6DOF 0.169 0.248 0.133 0.817 0.899
Boxes Translation 0.268 0.355 0.382 0.682 0.872
Boxes Rotation 0.191 0.356 0.492 0.883 0.695
EC Avg 0.256 0.337 0.442 0.811 0.825
Peanuts Light 0.050 0.084 0.086 0.284 0.447
Rocket Earth Light 0.103 0.298 0.162 0.425 0.648
Ziggy In The Arena 0.043 0.153 0.082 0.419 0.748
Peanuts Running 0.043 0.108 0.054 0.171 0.460
EDS Avg 0.060 0.161 0.096 0.325 0.576

TABLE 10
The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Inlier Ratio.

Inlier Ratio ↑

Sequence ICP [4] EM-ICP [5] HASTE [3] EKLT [2] Ours
Shapes Translation 0.986 0.916 0.957 0.882 0.962
Shapes Rotation 0.962 0.955 0.950 0.968 0.950
Shapes 6DOF 0.696 0.755 0.325 0.852 0.946
Boxes Translation 0.937 0.937 0.963 0.945 0.980
Boxes Rotation 0.946 0.798 0.908 0.980 0.949
EC Avg 0.905 0.872 0.820 0.925 0.957
Peanuts Light 0.740 0.868 0.815 0.780 0.802
Rocket Earth Light 0.369 0.401 0.293 0.375 0.374
Ziggy In The Arena 0.421 0.884 0.609 0.469 0.927
Peanuts Running 0.502 0.578 0.531 0.700 0.750
EDS Avg 0.508 0.683 0.562 0.581 0.713

the statistic-free normalization procedure of SBT-Max means
that events outside the neighborhoods of tracked features
can be ignored. Because of this deployment advantage and
the competitive performance despite its more simplistic
normalization, we select SBT-Max as event representation.

15.2 Augmentation Parameters
To validate the utility of our augmentation strategy, we
train the reference network with different augmentation
parameters. In Tab. 13, we present the experimental results
for using rotations (R) of up to ±30◦, scaling (S) of up
to ±10%, and translations (T) of up to ±5px. The default

training settings use rotations of up to ±15◦, scaling of up
to ±10%, and translations of up to ±3px. Without augmen-
tation, we observe significant degradation on both datasets.
The benefit of additional translation augmentation is in-
conclusive, given the degradation on EC and improvement
on EDS. Lastly, with increased rotation augmentation, we
observe that the performance improves on average for both
datasets. Notably, the sim-to-real gap can be demonstrated
when the reference network is trained without on-the-fly
augmentations (No Aug). As a consequence, the expected
FA metric on the real dataset drops considerably, from 0.745
to 0.535 on the EC dataset and from 0.346 to 0.150 on
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TABLE 11
The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Track Normalized Error.

Track Normalized Error ↓

Sequence ICP [4] EM-ICP [5] HASTE [3] EKLT [2] Ours
Shapes Translation 1.943 3.941 2.628 1.104 1.153
Shapes Rotation 1.870 2.614 2.536 1.723 1.981
Shapes 6DOF - - - 1.833 1.702
Boxes Translation 2.289 2.613 2.109 1.227 1.166
Boxes Rotation 2.571 3.855 3.383 1.375 1.836
EC Avg 2.168 3.256 2.664 1.452 1.568
Peanuts Light 3.185 2.323 2.432 3.560 3.957
Rocket Earth Light - 4.062 - 2.405 3.599
Ziggy In The Arena - 3.407 2.672 - 2.673
Peanuts Running - - - 3.812 3.444
EDS Avg 3.185 3.264 2.552 3.259 3.418

TABLE 12
The performance of the reference model when trained with different input event representations.

Expected FA ↑

Sequence SBT-Max SBT No Norm SBT [67] Voxel
Grids [85]

Shapes Translation 0.780 0.160 0.887 0.802
Shapes Rotation 0.747 0.057 0.823 0.799
Shapes 6DOF 0.881 0.006 0.882 0.882
Boxes Translation 0.849 0.160 0.831 0.769
Boxes Rotation 0.614 0.057 0.677 0.638
EC Avg 0.774 0.088 0.820 0.778
Peanuts Light 0.388 0.020 0.373 0.372
Rocket Earth Light 0.271 0.009 0.284 0.282
Ziggy In The Arena 0.686 0.040 0.708 0.694
Peanuts Running 0.059 0.024 0.073 0.150
EDS Avg 0.351 0.023 0.359 0.374

TABLE 13
The performance of the reference model when trained with different augmentation parameters.

Expected FA ↑

Sequence R15 S10 T3 R30 T5 No Aug
Shapes Translation 0.691 0.861 0.720 0.723
Shapes Rotation 0.726 0.766 0.697 0.617
Shapes 6DOF 0.883 0.882 0.876 0.499
Boxes Translation 0.809 0.791 0.743 0.501
Boxes Rotation 0.616 0.703 0.448 0.337
EC Avg 0.745 0.801 0.697 0.535
Peanuts Light 0.361 0.384 0.337 0.311
Rocket Earth Light 0.284 0.275 0.274 0.094
Ziggy In The Arena 0.658 0.699 0.669 0.166
Peanuts Running 0.080 0.098 0.156 0.028
EDS Avg 0.346 0.364 0.359 0.150

the EDS dataset. The sim-to-real gap is also apparent in
the qualitative comparisons between the multiflow dataset
(Fig. 11) and the real datasets, EDS and EC (Fig. 5 in the
main manuscript).

16 RUNTIME AND MEMORY STUDY

For the disparity estimation task, we evaluate the impact
of processing different numbers of feature tracks on the
runtime and memory used by our method. As shown in
Fig. 12, the runtime increases fast when processing 64 in-
stead of 16 feature tracks. However, increasing the number
of feature tracks from 64 to 256 adds only 0.6 ms to the

runtime, which can be explained by the parallelization ca-
pability of a GPU. This confirms that even when processing
256 feature tracks, our proposed method achieves a lower
runtime than the closest dense baseline (14.9 ms vs. 25.2 ms).
Nevertheless, we did observe a less favorable linear increase
in GPU memory usage, reaching 10.9 GB when processing
256 feature tracks. The memory usage can potentially be
optimized by applying the first two U-Net modules in the
feature network to the entire frame and event representation
before extracting patches to reduce redundant computations
of overlapping patches. It is also worth noting that our tests
were conducted using PyTorch, which is not optimized for
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Fig. 12. Runtime and Memory for Sparse Disparity Estmation The runtime and memory used by our method for different numbers of processed
feature tracks.

Fig. 13. Predicted Disparities The tracks on the M3ED dataset are colorized based on their corresponding disparity values, ranging from blue to
red to represent small to large disparity values predicted by our method.

inference speed. Deploying the method directly in C++ or
TensorRT would likely lead to significantly faster and more
efficient performance.

Overall, the proposed sparse disparity estimation setting
trades off access to global frame information for faster, more
efficient computation. Although our method does not have
access to full frames, our proposed frame attention module
enables the sharing of global frame information while ac-
cumulating temporal information along feature tracks. As
a result, our method achieves performance comparable to
dense approaches while benefiting from the efficiency of
sparse disparity estimation.

17 QUALITATIVE DISPARITY PREDICTIONS

Fig 13 shows disparity tracks predicted with our method on
the M3ED dataset featuring different platforms (Quadrotor,
Quadruped, Car).
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