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Abstract

Unwanted camera occlusions, such as debris, dust, rain-
drops, and snow, can severely degrade the performance of
computer-vision systems. Dynamic occlusions are partic-
ularly challenging because of the continuously changing
pattern. Existing occlusion-removal methods currently use
synthetic aperture imaging or image inpainting. However,
they face issues with dynamic occlusions as these require
multiple viewpoints or user-generated masks to hallucinate
the background intensity. We propose a novel approach to
reconstruct the background from a single viewpoint in the
presence of dynamic occlusions. Our solution relies for
the first time on the combination of a traditional camera
with an event camera. When an occlusion moves across
a background image, it causes intensity changes that trig-
ger events. These events provide additional information on
the relative intensity changes between foreground and back-
ground at a high temporal resolution, enabling a truer re-
construction of the background content. We present the first
large-scale dataset consisting of synchronized images and
event sequences to evaluate our approach. We show that
our method outperforms image inpainting methods by 3dB
in terms of PSNR on our dataset.

1. Introduction

The majority of computer vision algorithms operate un-
der the assumption that the scene being analyzed is visi-
ble in its entirety and without any obstructions. However,
occlusions resulting from non-ideal environmental factors,
such as dirt from road debris, insects, raindrops, snow, and
others, have the potential to significantly reduce the qual-
ity of captured images. The dynamic nature of these oc-
clusions, affects the downstream applications such as au-
tonomous navigation, object detection, tracking, 3D recon-
struction, etc. Dynamic occlusions pose an interesting chal-
lenge for scene understanding, especially for robotics and
autonomous driving, where it is crucial to know the oc-
cluded scene for safe navigation in unknown environments.

The literature, however, has focused more on static oc-

Figure 1: (Top) The background image (right) occluded by
moving particles observed with a traditional camera (left)
and event camera (center). (Middle) The proposed method
for background reconstruction in the presence of moving
objects uses the continuous event stream and the occluded
image to learn to reconstruct the background image. (Bot-
tom) Our approach outperforms the image inpainting base-
line and accurately reconstructs the background intensity.

clusions and many different approaches have been proposed
that use multiple viewpoints (synthetic aperture imaging)
[21, 44], optical diffraction cloaking [35], or image inpaint-
ing [2, 9, 18, 19, 38, 43, 20, 4, 12]. The assumption of static
occlusion often renders the above approaches infeasible in
the presence of dynamic obstructions [49, 39]. Image in-
painting approaches are often trained on large-scale datasets
to predict intensity in areas specified by a pre-defined mask.
However, these methods hallucinate the scene since they are
trained to favour more aesthetically pleasing images over
the true scene content as seen in Fig. 1. While there have
been several advancements in these approaches with the
advent of deep learning, these methods fail to reconstruct
true scene content in the presence of dynamic occlusions.
Synthetic Aperture Imaging (SAI) captures the target scene
from multiple viewpoints to create a virtual camera with a
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large-aperture lens [47, 49]. This makes it easier to blur the
foreground occlusion and refocus the image on the back-
ground scene. These methods assume the occlusions are at
the same depth and stationary throughout the capture pro-
cess, which can be up to a few milliseconds, rendering this
method infeasible for fast-moving occlusions.

In this paper, we propose a novel approach to estimate
the background image in the presence of dynamic occlu-
sions using a single viewpoint. Our solution complements
a traditional camera with an event camera. Event cameras
[6] are bio-inspired sensors that asynchronously measure
changes in brightness with microsecond resolution. When
an occlusion crosses over a background image, it causes
changes in intensity, thus triggering events as seen in Fig. 1.
These events give additional information on the relative in-
tensity changes between the foreground and background at
a high temporal resolution, which leads to a more precise
reconstruction of the background, compared to image in-
painting methods which only use unoccluded image statis-
tics. Since this is the first time an event camera is used
to tackle dynamic occlusion removal, we collect a large-
scale dataset containing 233 challenging scenes with syn-
chronized events, occluded images, and ground truth unoc-
cluded images.

The classical event generation model [16] can be used to
reconstruct the background image intensity, given contrast
threshold and occlusion intensity. However, due to inher-
ent sensor noise and instability of the contrast threshold,
this approach results in poor performance at higher occlu-
sion densities. We, therefore, propose to use a supervised
data-driven approach that learns to reconstruct the unoc-
cluded image, implicitly learning the sensor parameters and
noise characteristics. The network predicts the background
intensity using only a single occluded image and events
We show that our method relying on a single frame and
events leads to a performance improvement of 3.3 dB on
our synthetic dataset and 2.8 dB on our real dataset over the
image-inpainting baselines in terms of PSNR. Our results
show that our method is capable of accurately reconstruct-
ing scenes in the presence of dynamic occlusions and has
the potential to increase perceptual robustness in unknown
environments. To summarize, our contributions are:

• A novel solution to the problem of background image
reconstruction in the presence of dynamic occlusions
using a single viewpoint. We are the first to tackle this
problem using an event camera in addition to a stan-
dard camera.

• A large-scale dataset recorded in the real world con-
taining 233 challenging scenes for background recon-
struction with synchronized events, occluded frames,
and groundtruth unoccluded images.

2. Related works

2.1. Fame-based methods

Image inpainting is the task closest related to our tack-
led problem of removing dynamic occlusions in a sin-
gle camera view. In image inpainting, the goal is to re-
construct missing pixel intensities in areas specified by a
pre-defined mask. Traditional image inpainting methods
rely on the statistics of the unmasked image areas to di-
rectly infer the missing regions [2, 1] or copy textures
from database images [3, 9]. Because of the ability to ac-
count for the context in masked images, current research
on image inpainting mostly focuses on deep generative ap-
proaches [10, 18, 19, 25, 28, 50]. To provide global con-
textual information early on in the network, LaMa[38] pro-
poses to perform convolutions in the Fourier domain. In [7],
a two-stream network fuses texture and structure informa-
tion for a more accurate image generation. To generalize
to different scenes, MISF [13] proposes to apply predictive
filtering on the feature level to reconstruct semantic infor-
mation and on the image level to recover details. More
recently, transformers were also applied to the task of im-
age inpainting [43, 20, 4, 12] and achieve state-of-the-art
performance. In PUT [20], an encoder-decoder is applied
to reduce the information loss suffered by tokenizing and
dekonizing the tokens for the transformer backbone. Instead
of directly predicting the pixel intensities, ZITS [4] uses a
transformer model to restore the structures with low resolu-
tion in form of edges, which are then further processed by a
CNN. Generally, since the only information for reconstruct-
ing image patches is given by the structure and context of
the unmasked regions, image inpainting methods aim to re-
construct plausible and aesthetically pleasing images with-
out the focus on reconstructing the real scene content. Ad-
ditionally, the application of image inpainting methods for
occlusion removal requires the estimation of the occlusion
mask. Therefore, image inpainting methods tackle a dif-
ferent problem setting and are not designed for the task of
removing dynamic occlusions in a single-camera view.

Instead of considering only one image, a sequence of im-
ages taken at different positions can be leveraged to remove
reflections and static occlusions [21] or contaminant arti-
facts on lenses [14]. In the field of synthetic aperture imag-
ing (SAI), different camera views are used to estimate the
incoming lights from the background onto a synthetic cam-
era view. By considering a large number of images captured
at different positions, SAI methods can focus on different
planes in the scene, effectively removing the static occlu-
sions by blurring them out [47, 42, 41, 22, 49, 29]. Further-
more, various imaging setups with hardware modifications
are developed. In DeOccNet [44], multiple views of a light
field camera are used in an encoder-decoder fashion to re-
move the static occlusion. Capturing the same scene from



multiple viewpoints constrains the occlusion to be station-
ary during the capture process, which can range from a few
milliseconds to seconds depending on the camera speed and
exposure time. Our problem, therefore, becomes more chal-
lenging to solve with SAI, as these methods are designed
to remove static occlusions by considering multiple camera
views. Another interesting work [35] proposes to learn a
diffractive optical element, which can be inserted in front
of the lens to focus better on the objects further away from
the camera, which effectively removes thin occluders close
to the camera.

2.2. Event-based methods

It was shown that event cameras are capable of gen-
erating image sequences in high-speed and high-dynamic
range scenes in which standard cameras fail [32, 33, 24,
52]. Moreover, event cameras are also successfully applied
in combination with frame cameras for different imaging
tasks. Specifically, the high temporal resolution of event
cameras is used for filling in missing information between
two frames to create high frame-rate videos [40, 46, 54]
or to deblur images [36, 26], whereas the high-dynamic
range property is leveraged in HDR imaging [8, 46, 23].
Recently, event cameras achieved impressive results for re-
moving static occlusions using a moving camera, which is
termed event-based synthetic aperture [53, 51]. In [15],
frames are additionally considered to reconstruct the back-
ground information behind a static, dense occlusion. In
contrast to our proposed method for dynamic occlusion re-
moval, the stated event-based synthetic aperture approaches
tackle a different task of removing static occlusions, which
are captured at different positions using a moving camera.

3. Method

Problem formulation Let us assume an event-based dy-
namic occlusion setting, where we are given an occluded
frame I0 at timestep 0 and an event sequence recorded be-
tween timestep 0 and t. We aim to reconstruct the back-
ground image from event sequences by integrating infor-
mation from events and the occluded image.

Basic considerations Event-cameras are novel, bio-
inspired sensors that asynchronously measure changes (i.e.,
temporal contrast) in illumination at every pixel, at the time
they occur [16, 37, 5, 30]. When a particle occludes a back-
ground pixel at position xk at time t, the intensity changes
from L(xk, tk −∆tk) to L(xk, tk). In particular, an event
camera generates an event ek = (xk, tk, pk) at time tk when
the difference of logarithmic brightness at the same pixel
xk = (xk, yk)

⊤ reaches a predefined threshold C:

L(xk, tk)− L(xk, tk −∆tk) = pkC, (1)

where pk ∈ {−1,+1} is the sign (or polarity) of the bright-
ness change, and ∆tk is the time since the last event at the
pixel xk. The result is a sparse sequence of events that are
asynchronously triggered by illumination changes. To re-
construct the original intensity, we use the above event gen-
eration model as follows:

L(xk, tk) = L(xk, tk −∆tk) +
∑

pkC, (2)

Using the above equation, the intensity of the occluded pix-
els can be estimated under the condition that the contrast
threshold C and the position of the occlusion are known.
Thus, a model-based method requires segmenting the oc-
cluded pixels and estimating the contrast threshold.

We design such a method as a baseline for compari-
son and refer to it as Accumulation Method. The designed
method assumes that the occluded pixels have similar inten-
sities and uses this heuristic to segment the occluded pixels
from the background. However, this method breaks down
in the presence of multiple overlapping occlusions, which
leads to an occluded area in the image with different inten-
sities. For the estimation of the unknown contrast threshold
C, as is commonly done, a reasonable value is defined for
the event accumulation.

3.1. Network Architecture

We design a learning-based method to tackle these
deficiencies by implicitly learning the contrast threshold
as well as detecting the occluded areas using the input
frame and events. The proposed network takes as input
a single occluded image I0 and N event representations
E0→τ , ..., E(N−1)τ→t, which are constructed in time inter-
vals of τ based on the events recorded immediately after the
image between timestep 0 and t. The proposed fully con-
volutional network leverages ConvLSTM layers [48] to in-
tegrate the events and follows a U-Net structure [34] to pre-
dict a residual image Ĩ0. The residual image is added to the
occluded input image to obtain the final occlusion-free in-
tensity image Î0, which should contain the true background
information at the occluded areas of the input image. The
overview of our network is visualized in Fig. 2 (a).

As a first step, we integrate the event information in
the Event Accumulation Module (EAM) to retrieve accu-
mulated intensity changes since the events capture instanta-
neous changes caused by the movement of the occlusions.
The Event Accumulation Module should focus on the inten-
sity changes relevant to the background information, i.e., it
should select the intensity information at the timesteps at
which the background behind the occlusions becomes vis-
ible. To achieve this, we integrate the event information at
multiple timesteps and let the network select the intensity
change corresponding to the unoccluded background. This
also helps the network to ignore events triggered by over-
lapping occlusions. We make use of the accumulation and



Figure 2: As shown in (a), our proposed method first integrates N event representations E0→τ , ..., E(N−1)τ→t using ConvL-
STM layers in our Event Accumation Module (EAM). The final hidden state of the ConvLSTM layers is processed with the
multi-scale Event Encoder. Similarly, the occluded input image I0 is processed with a Frame Encoder. At each scale j, the
Occlusion-aware Feature Fusion (OFF) module (b) decides in spatial and channel dimensions which frame features F j

I and
event features F j

E to fuse. The fused features F j
F are reconstructed to a residual image Ĩ0 using the Reconstruction Decoder.

The occlusion-free image Î0 is obtained by adding the residual image to the input image I0.

gating mechanism of ConvLSTM layers to model the event
integration mechanism, as well as the timestep selection.
Specifically, we apply two ConvLSTM layers in sequence
to recurrently process the event representation starting with
an initial zero-valued hidden and cell states. The output of
the Event Accumulation Module represents the last hidden
state of the last ConvLSTM layer at the timestamp of the
final event representation.

The integrated event features are then further encoded
using a multi-scale Event Encoder consisting of a convolu-
tion layer and a batch normalization layer with ReLU acti-
vation per scale to generate event features. In a similar fash-
ion, the occluded image is processed using a correspond-
ing Frame Encoder. In total there are j=6 scales. Due to
the differential principle of event cameras, we noticed that
event features are highly beneficial for the reconstruction
of textures, e.g., edges, but struggle to reconstruct uniform
image areas. In contrast, standard frames contain absolute
intensities and thus are better suited for filling in uniform
areas since, in the simplest case of constant pixel values,
a border value copying suffices. Because of this duality,
we process event and frame features separately and employ
a spatial as well as channel-wise weighting between them
at each encoding scale j. The spatial weighting is done in
the Occlusion-aware Feature Fusion (OFF) module, which
computes gating weights W j based on the event features
F j
E and frame features F j

I at the considered scale j as well
as the fused features from the previous scale F j−1

F , which
are downscaled by a strided convolution layer. Specifically,
the event and frame features are fused by weighting them

with W j and 1−W j and summing them up.

F̂ j
F = (1−W j)F j

I +W jF j
E , (3)

Together with the fused feature of the previous scale, the
weighted sum of the event and frame features is given as
input to convolution layers outputting the fused features F j

F .
The Occlusion-aware Feature Fusion module is visualized
in Fig. 2 (b).

Finally, the fused features at each scale are used as skip
connections inside a Reconstruction Decoder. For upsam-
pling, we use a bilinear interpolation followed by a convolu-
tion layer. The output of the Reconstruction Decoder is the
residual image Ĩ0, which is added to the input image I0 and
given to a sigmoid function resulting in the final occlusion-
free image Î0. For more details about the network structure,
we refer to the supplementary.

4. Dataset

To the best of our knowledge, there exists no dataset
aimed at tackling the problem of dynamic occlusion re-
moval using an event camera. Therefore, we generated a
new synthetic dataset containing frames and events to com-
pare our approach against existing baselines in controlled
conditions. Furthermore, to validate our approach in the
real world, we record a novel dataset with real events and
images. Both datasets lay the foundation for future research
in dynamic occlusion removal using event cameras.
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Figure 3: Sequence samples of different coverages from our
synthetic dataset showing the occlusion-free ground truth
frame (left), the occluded frame (middle), and the events
accumulated into an event frame (right).

4.1. Synthetic Dataset

For the synthetic dataset, we simulate 320 training and
160 test sequences, each containing a sequence of occluded
images, synthetic events, and an occlusion-free ground truth
image. The background images are sampled from the MS-
COCO dataset [17] and cropped to a resolution of 384×512.
Each sequence consists of an image covered with circular-
shaped particles which smoothly move across the image.
To introduce more variability in the data generation pro-
cess, we randomize the size, intensity, and velocity of the
occlusion particles. This is done to simulate different occlu-
sion densities from 10% to 60% occlusion ratio as seen in
Fig. 3. Since the generation of events requires high-frame-
rate videos, we compute the continuous-time trajectory of
the particles over the duration of the sequences and render
the occluded frames at a high framerate. Events are gen-
erated from these rendered images using ESIM [31]. Fi-
nally, for each sequence, we create synchronized event se-
quences, the occluded image, groundtruth occlusion mask,
and groundtruth background image. These groundtruth oc-
clusion masks are only used as an input to the image in-
painting baselines. We consider grayscale images instead

(a) (b)

Figure 4: For the recording of our real-world dataset, we
use a beamsplitter setup consisting of an event and a frame
camera (a) to record particles moving on top of a screen (b).
The experimental setup consists of the TV screen displaying
a background image with the occluding particles rolling on
the screen.

of RGB images because events from the event camera only
provide relative intensity changes but lack color informa-
tion. Therefore, the reconstruction of RGB images using
events introduces additional challenges.

4.2. Real-world Dataset

We build a dynamic occlusion dataset where the event
streams are captured by a Prophesee Gen4 camera [5], with
a resolution of 1280 × 720, and the images with a FLIR
Blackfly S camera with a resolution of 4000×3000. The im-
ages are captured at a framerate of 15 fps and with an expo-
sure time of 7ms. The cameras are hardware synchronized
and mounted in a beam splitter setup (Fig. 4 (a)), which
contains a mirror that splits the incoming light to the event
and frame camera, ensuring alignment between events and
frames. Similar to the synthetic dataset, background im-
ages are sampled from the MSCOCO dataset [17] and pro-
jected on a TV screen, which is recorded with the beam
splitter setup pointed towards the screen. The occlusions
are created by rolling Styrofoam balls over the TV screen
as shown in Fig. 4 (b). For each sequence, the ground truth
is collected by recording the image projected on the screen
without any occlusions. We sample 3 frames from each se-
quence corresponding to low, medium, and high occlusion
densities as shown in Fig. 5. Overall, the real-world dataset
consists of 154 training sequences and 79 test sequences.

5. Experiments
Implementation details Our models are implemented in
Pytorch [27] and trained from scratch with random weights
on our synthetic dataset. For the experiments on our real
dataset, we finetune our pre-trained network on the real
training data. We use Adam optimizer[11] with a learning
rate of 1e−3 and batch size of 4 and train for 1250 epochs
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Figure 5: Our real-world dataset contains samples with low,
medium, and high occlusion density.

on the synthetic and real dataset. We supervise our network
with the L1 loss computed on the predicted and ground truth
occlusion-free images. To measure the quality of the recon-
structed image, we use structural similarity index measure
(SSIM) [45], peak signal-to-noise ratio (PSNR), and mean
absolute error (MAE).

Baselines We evaluate our approach against four state-
of-the-art image-inpainting solutions: MAT [12], MISF
[13], PUT [20], and ZITS [4]. These baselines are trained
on challenging large-scale datasets with over eight million
images. Thus, for our experiments, we use the weights
provided by the authors. Since dynamic occlusion re-
moval from a single viewpoint using an event camera is a
novel task, there currently do not exist any event-based ap-
proaches that tackle this problem directly. The closest base-
line uses events and frames to reconstruct the background
image from multiple viewpoints (EF-SAI) [15]. EF-SAI
[15] uses a refocus module with events to blur the fore-
ground and focus on the target depth plane of the back-
ground. We adapt this baseline for our task by providing
it with a single image and events from only a single view-
point and train this network on our dataset from scratch.
Additionally, we also compare against events-to-image re-
construction methods [32]. This method is adapted by com-
bining the reconstructed event images with the occluded im-
ages using the groundtruth mask. Note that all of the evalu-
ated baselines were originally not designed for this particu-
lar task but are the closest related methods applicable to our
task.

5.1. Results on Synthetic Dataset

To compare our method against the baselines in con-
trolled conditions, we evaluate all methods on our synthetic
dataset. Table 1 summarizes the quantitative results. Our
method outperforms the best image inpainting baseline by
3 dB in terms of PSNR. Fig. 6 shows qualitative compar-
isons between different methods. Image inpainting meth-
ods tend to hallucinate the background, resulting in visually
more pleasing information rather than the true scene. An
example of this can be seen in Fig. 6 third row, where the
inpainting method is unable to reconstruct the characters on

Method Input PSNR ↑ SSIM ↑ MAE ↓

MAT [12] I 30.7620 0.9217 0.0107
MISF [13] I 31.1884 0.9229 0.0101
PUT [20] I 26.9858 0.8608 0.0187
ZITS [4] I 31.2971 0.9328 0.0100
EF-SAI [15] I+E 26.7557 0.8688 0.0257
E2VID [32] E 19.2278 0.6086 0.0508
Ours (Acc. Method) E 20.3444 0.6955 0.0373
Ours (Learning) I+E 34.6203 0.9536 0.0085

Table 1: Reconstruction performance on our synthetic
dataset. ’I’ and ’E’ stand for image and events, respectively.

Method Input PSNR ↑
Coverage 10% 20% 30% 40% 50% 60%

MAT [12] I 35.4937 31.4344 31.895 29.8665 27.7057 28.1765
MISF [13] I 35.6868 31.8720 31.7689 30.5100 28.3776 28.9148
PUT [20] I 32.7979 28.6378 27.0988 26.1156 23.7555 23.5093
ZITS [4] I 35.6619 31.9159 32.3340 30.4923 28.3828 28.9959
EF-SAI [15] I+E 29.2994 27.9049 27.7354 26.2447 24.7267 24.6231
E2VID [32] E 22.0048 19.8868 20.2063 18.1452 17.5353 17.5884
Ours (Acc. Method) E 28.0390 22.4906 20.6897 17.9743 17.0200 15.8527
Ours (Learning) I+E 40.1286 36.3622 35.8476 33.2527 31.0083 31.1224

Table 2: Reconstruction performance on our synthetic
dataset in terms of PSNR divided according to the occlu-
sion density of the test samples.

the bus, whereas our method is able to better preserve this
information. We also outperform the event-based synthetic
aperture imaging baseline EF-SAI [15] and the event-to-
image reconstruction baseline E2VID [32]. Although the
input to our method and EF-SAI consists of events and a
single image, the EF-SAI baseline was designed for multi-
view reconstruction. The simple event accumulation base-
line is one of the lowest performing baselines even with the
knowledge of the correct contrast threshold, as the occlu-
sions are too complex for the basic event generation model
to capture the intensity changes as discussed in the Sec-
tion 3. We also analyze the effect of occlusion density on
the performance of all the methods and summarize them in
Table 2. As expected, increasing the occlusion density de-
creases the performance of all the approaches. However,
at higher occlusion densities, the image inpainting methods
drastically degrade in performance as they tend to halluci-
nate occluded areas. In contrast, our method uses events
that provide continuous intensity changes, which results in
a better performance at higher occlusion densities. We pro-
vide more qualitative results of other baselines in the sup-
plementary material.

Ablation Study To study the effect of the EAM and OFF
modules in our network, we report the network performance
by removing the specific modules. For computational rea-
sons, we performed the ablation of the OFF module without
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Figure 6: Images showing the occluded input frame, the reconstructed frame of the best-performing frame-based and event-
based baselines and our method, and the ground truth frame for our synthetic dataset.

Method Input PSNR ↑ SSIM ↑ MAE ↓

Ours (w/o EAM & OFF) I+E 31.0776 0.9212 0.0139
Ours (w/o EAM) I+E 32.7652 0.9425 0.0102
Ours (Full) I+E 34.6203 0.9536 0.0085

Table 3: The reconstruction performance on the synthetic
dataset of our network obtained by removing adaptively the
introduced modules.

including the EAM module, which reduces significantly the
training time. As shown in Table 3, adding the OFF mod-
ule to the network improves the performance with respect
to all metrics. This improvement can be explained by the
ability of the OFF module to better localize the occlusions
and adaptively fuse image and event features throughout the
network scales. Including the EAM module leads to an even
higher performance increase of 1.9 dB in PSNR. One pos-
sible reason for the improvement over the network without
recurrent event encoding is that the EAM module is bet-
ter at handling multiple overlapping occlusions by selecting
events relevant to the true background and ignoring the re-
dundant event information. For more ablation studies show-
ing the effect of the event and image features on the textured
and uniform image regions, we refer to the supplementary
material.

5.2. Results on Real Dataset

We also evaluate our method on our real dataset collected
with a custom build beamsplitter setup. Unlike the synthetic
dataset, we do not have an occlusion mask available for the
sequences. We, therefore, approximate the mask by sub-
tracting the occluded frame from the groundtruth frame and
applying thresholding. This mask is used as an input for the
image inpainting methods and event image reconstruction
baselines. The quantitative results are shown in Table 4.
Our results on the real dataset follow a similar trend to the
synthetic dataset. In Fig. 7, we show the qualitative results
for different sequences. While the image inpainting method
results in visually clean images, the hallucination artifacts
can be clearly seen in the small image patches, e.g., the fin-
gers around the camera are missing in the sample visualized
in the first row or the watch in the sample shown in the sec-
ond row. Our method, on the other hand, can reconstruct
the background information accurately.

6. Conclusion

We introduce a novel event-based approach for back-
ground image reconstruction in the presence of dynamic
occlusions. It leverages the complementary nature of event
camera and frames to reconstruct true scene information in-
stead of hallucinating occluded areas as done by image in-
painting approaches. Specifically, our proposed data-driven
approach reconstructs the background image using only one
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Figure 7: Images showing the occluded input frame, the reconstructed frame of the best-performing frame-based and event-
based baselines and our method, and the ground truth frame for our real-world dataset.

Method Input PSNR ↑ SSIM ↑ MAE ↓

MAT [12] I 26.7451 0.5670 0.0285
MISF [13] I 29.0281 0.6951 0.0222
PUT [20] I 18.9135 0.2726 0.0801
ZITS [4] I 30.2675 0.7542 0.0190
EF-SAI [15] I+E 30.2390 0.8037 0.0194
E2VID [32] E 16.5642 0.3203 0.1066
Ours ( (Acc. Method) E 19.5110 0.5685 0.0606
Ours (Learning) I+E 33.0701 0.8173 0.0166

Table 4: Reconstruction performance on our real-world
dataset.

occluded image and events. The high temporal resolution of
the events provides our method additional information on
the relative intensity changes between the foreground and
background, making it robust to dense occlusions. To eval-
uate our approach, we present the first large-scale dataset
recorded in the real world containing over 230 challeng-
ing scenes with synchronized events, occluded images, and

groundtruth images. Our method achieves an improve-
ment of 3dB in PSNR over state-of-the-art frame-based and
event-based methods on both synthetic and real datasets.
We will release our synthetic and recorded dataset repre-
senting the first datasets for background image reconstruc-
tion using events and images in the presence of dynamic oc-
clusions. We believe that our proposed method and dataset
lay the foundation for future research.
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7. Network Structure

In this section, we provide details of the structure of our
network. As explained in the main paper, our network con-
sists of the Frame Encoder, the Event Encoder, the Event
Accumulation Module (EAM), the Occlusion-aware Fea-
ture Fusion (OFF) module and the Reconstruction Decoder.

The architecture of the Frame Encoder and the Event En-
coder is shown in Table 5. Both encoders have the same
structure except at the first two scales, where the frame en-
coder is provided with a grayscale image of dimension (h,
w, 1) and the event encoder receives the output of the EAM
of dimension (h, w, 32). The architecture of the EAM mod-
ule is shown in Fig. 8.

We provide the details of the OFF module in Table 6.
The OFF module computes gating weights W j at each scale
j based on the current-scale event features F j

E and frame
features F j

I as well as the previous-scale fused features
F j−1
F downscaled to F̄ j−1

F . The fused feature F j
F is then

obtained based on the current-scale event and frame features
F j
E and F j

I , the gating weights W j , and the downsampled
previous-scale fused feature F̄ j−1

F . The OFF module can be
described with the following equations:

F̃ j
F = G(F j

E , F
j
I ) (4)

W j = G(F̃ j
F , F̄

j−1
F ) (5)

F̂ j
F = (1−W j)F j

I +W jF j
E (6)

F j
F = G(F̂ j

F , F̄
j−1
F ) (7)

where G indicates concatenation followed by convolution
operations.

Finally, the structure of the Reconstruction Decoder is
shown in Table 7 which uses the fused features at each scale
as skip connections to predict the residual image.

8. Detailed Ablation Results

Here we present a more detailed ablation study on the
network architecture.

Frame Encoder Event Encoder

Scale j Layer Out Size (hj , wj , cj) Layer Out Size (hj , wj , cj)

0 input image (h, w, 1) – –
1 conv(5,1,2) (h, w, 32) – –
2 conv(5,2,2) (h/2, w/2, 64) conv(5,2,2) (h/2, w/2, 64)
3 conv(5,2,2) (h/4, w/4, 128) conv(5,2,2) (h/4, w/4, 128)
4 conv(5,2,2) (h/8, w/8, 256) conv(5,2,2) (h/8, w/8, 256)
5 conv(5,2,2) (h/16, w/16, 512) conv(5,2,2) (h/16, w/16, 512)
6 conv(3,1,1) (h/16, w/16, 512) conv(3,1,1) (h/16, w/16, 512)

Table 5: The architecture of the Frame Encoder and Event
Encoder in our proposed method, in which (hj , wj , cj) de-
notes the height, width, and number of channels of the out-
put of the layer corresponding to scale j, and conv(k, s, p)
denotes a convolution block with kernel size k, stride s and
padding p. The input layer corresponds to j = 0, and the in-
put size used in our paper is h= h0 = 384, w= w0 = 512.

Occlusion-aware Feature Fusion (OFF)
Input Input Size Layer Output

F j
E & F j

I (hj , wj , cj) conv(5,1,2) × 2 F̃ j
F

F j−1
F (hj−1, wj−1, cj−1) conv(5,sj ,2) F̄ j−1

F

F̄ j−1
F & F̃ j

F (hj , wj , cj) conv(5,1,2) × 2 W j

F j
E , F j

I & W j (hj , wj , cj) Feature Selection F̂ j
F

F̂ j
F & F̄ j−1

F (hj , wj , cj) conv(5,1,2) × 2 F j
F

Table 6: The structure of the Occlusion-aware Feature Fu-
sion module in the proposed method.

Reconstruction Decoder

Scale Input Size Layer Output Size

6 (h/16, w/16, 512+512) up(2)-conv(5,1,2) (h/8, w/8, 512)
5 (h/8, w/8, 512+256) up(2)-conv(5,1,2) (h/4, w/4, 256)
4 (h/4, w/4, 256+128) up(2)-conv(5,1,2) (h/2, w/2, 128)
3 (h/2, w/2, 128+64) up(2)-conv(5,1,2) (h, w, 64)
2 (h, w, 64+32) conv(3,1,1) (h, w, 32)
1 (h, w, 32) conv(1,1,0) (h, w, 1)

Table 7: The structure of the Reconstruction Decoder, in
which ’up(2)’ denotes updampling by 2.



Figure 8: The EAM in our proposed method which inte-
grates N = 5 event representations E0→τ , ..., E(N−1)τ→t

using two ConvLSTM layers. The final hidden state of the
second ConvLSTM layers formulates the first-scale event
feature F 1

E in the multi-scale Event Encoder.

Method Used Feature Scale
Image —— Event PSNR ↑ SSIM ↑ MAE ↓

Shared F & E Encoder All scale All scale 27.8297 0.8642 0.0217
Indep. F Encoder All scale 1st scale 31.6567 0.9297 0.0133
Indep. E Encoder 1st scale All scale 31.3298 0.9263 0.0125
Indep. F & E Encoder Simple Fusion All scale All scale 31.0776 0.9212 0.0139
Indep. F & E Encoder with OFF All scale All scale 32.7652 0.9425 0.0102

Table 8: The effects of event and frame encoders and feature
fusion methods on reconstruction performance evaluated on
the synthetic dataset

8.1. Importance of Event and Frame Encoders

We study four different strategies to combine the event
and frame information and train each corresponding net-
work on our synthetic dataset. The first strategy combines
events and frame by concatenating them at the input stage
and uses a single encoder-decoder structure to predict the
reconstructed image, termed as Shared F & E Encoder. The
second strategy, termed Independent Frame Encoder, uses
an independent frame encoder, which computes the frame
features without considering the event information. A sec-
ond encoder takes as input the events and fuses for each
subsequent scale the frame features from the independent
frame encoder with the feature from the previous scale. As
the third strategy, we switch the inputs of the second strat-
egy, i.e., we use an independent event encoder and a second
encoder for fusing the event features with shallow frame
features (referred to as Independent Event Encoder). Since
we want to focus on the effect of processing the features for
each sensing modality separately, we use two independent
encoders for events and frame respectively and fuse features
at each scale using a simple convolution layer. This is re-
ferred to as Independent Event and Frame Encoder Simple

Fusion. Lastly, to show the effect of a more sophisticated
fusion, we also show the reconstructions using our OFF
module to perform the fusion of the event and frame fea-
ture at each scale (Independent Event and Frame Encoder
with OFF).

We show the qualitative comparison of these approaches
in Fig. 9 and provide quantitative evaluations in Table 8.
The Shared F & E Encoder results in the worst perfor-
mance in both the textured and untextured regions of the
image. The Independent Frame Encoder results in an im-
proved performance in uniform areas, whereas textured re-
gions are poorly reconstructed, as can be observed in the
third column of Fig. 9. The uniform texture of the red patch
is captured perfectly by this network, indicating the impor-
tance of image features for uniform areas. This can be ex-
plained by the fact that images contain absolute intensity
information of surrounding spatial regions, which provides
more information to the network for filling in the uniform
patches. However, the edges are not well preserved, which
results in bleeding edges, as seen in the edge of the letter ‘D’
in the first row of Fig. 9. The Independent Event Encoder,
in comparison to the Independent Frame Encoder, shows
better ability in reconstructing textured regions, which in-
dicates the importance of event features for reconstructing
textured areas. However, it struggles to remove occlusions
in uniform regions,

Both the second and the third strategy performs signifi-
cantly better than the first one, highlighting the importance
of having separate encoders for frames and events to enable
high-quality reconstruction of both textured and untextured
regions. However, a vanilla fusion of Independent Event
and Frame Encoder Simple Fusion does not take full ad-
vantage of the strengths of the two respective modalities and
therefore results in lower performance, as can be seen in the
fourth row in Table 8. In contrast, the Independent Event
and Frame Encoder with OFF achieves higher performance
than all the above-mentioned strategies. Especially, it can
better reconstruct textured regions, e.g., the edge of the let-
ter ‘D’ is recovered, as visualized in the first row of Fig. 9.
We believe that the differential nature of event cameras en-
ables the preservation of high-frequency structures such as
edges.

In summary, the proposed model using independent en-
coders for frame and events with a sophisticated fusion
shows the best overall performance.

8.2. Importance of EAM and OFF Modules

In this section, we study the impact of Event Accumu-
lation module (EAM) and Occlusion-aware Feature Fusion
(OFF) on network performance. The quantitative perfor-
mance is shown in Table 9 and the qualitative results can be
seen in Fig. 10. The base model without EAM and OFF re-
sults in the worst performance of 31dB PSNR, and adding



Occluded Shared F & E
Encoder Indep. F Encoder Indep. E Encoder Indep. F & E

Encoder w. OFF Groundtruth

Figure 9: Images showing the importance of independent image and event encoders, conducted without EAM. A uniform
region and a region containing interesting textures are shown in the red and green square boxes, respectively.

Occluded w/o both w/o EAM w/o OFF Ours Groundtruth

Figure 10: Images showing the importance of EAM and OFF modules. A uniform region and a region containing interesting
textures are shown in the red and green square boxes, respectively.

EAM improves it by 1.8dB in terms of PSNR. This gain
is achieved because the EAM is designed to select event
data that is relevant to the true background and filter out
redundant information. As can be seen in Fig. 10, the net-
work with EAM (4th column) shows better results in both
uniform and textured regions compared to the base model.
Also, in contrast to the two methods without EAM, the true
background information is recovered to a significantly bet-
ter extent in textured areas, even where there are multiple

overlapping occlusions.

The performance of the network gains a substantial im-
provement from the OFF module as well, with a 1.7dB in-
crease in PSNR. As illustrated in Fig. 10, the OFF module
also improves reconstruction quality in both uniform and
textured areas when compared with the base model. In ad-
dition, compared to the two models without OFF, the one
with OFF is significantly better at reconstructing uniform
or non-textured regions.



Method Input PSNR ↑ SSIM ↑ MAE↓

w/o EAM & OFF I+E 31.0776 0.9212 0.0139
w/o EAM I+E 32.7652 0.9425 0.0102
w/o OFF I+E 32.8892 0.9378 0.0119
Full I+E 34.6203 0.9536 0.0085

Table 9: The reconstruction performance on the synthetic
dataset of our network obtained by removing adaptively the
introduced modules.

Combining EAM and OFF, the full model achieves an
increase of more than 3.5dB PSNR over the base model.
Qualitatively, the full model performs better than all other
models in both types of regions, implying that the two mod-
ules benefit from each other.

9. Additional Qualitative Results

We show the qualitative comparisons between our
method and all the baselines on our synthetic and real-
world datasets in Fig. 11 and Fig. 12 respectively. Qual-
itatively, our method outperforms other baselines for both
datasets. We re-state our conclusions that image inpainting
baselines tend to hallucinate the missing areas, resulting in
clean but inaccurate image reconstructions. In comparison,
our method is better at preserving the details of the original
image, as can be seen in the highlighted patches.

10. Inference Time

In this section, we compare the computational complex-
ity of the methods in terms of inference time. Note that
while it is not feasible to compute the precise inference
time, as GPU loads vary over time due to other processes
running simultaneously, we approximate this number by av-
eraging the inference time over the entire test set. The run-
time is computed for a batch size of 1 using a Quadro RTX
8000 GPU for the learning-based baselines and Intel(R)
Core(TM) i7-3720QM CPU @ 2.60GHz for our model-
based baseline. The comparison for all the baselines is pre-
sented in Table 10. Note that only our model-based base-
line is run on CPU and therefore marked with a star. Our
method has an inference time of 0.18 sec, slightly slower
than the fastest image inpainting baseline MAT [12]. The
best performing image-inpainting baseline ZITS [4], on the
other hand, has an inference time of 1.94 sec.

Method MAT [12] MISF [13] PUT [20] ZITS [4] EF-SAI [15] E2VID [32] Ours (Acc. Method)* Ours (Learning)

Input I I I I I+E E E I+E
Infer. time 0.15 0.16 >60 1.94 3.13 0.01 0.001 0.18

Table 10: Comparison of inference time (sec).
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